
PC CARD STANDARD

Volume 6

Socket Services Specification

REVISION HISTORY
Date Socket Services

Specification Version
PC Card Standard
Release

Revisions

09/91 1.01 Initial release as independent specification

11/92 2.0 PCMCIA 2.01 Reformatted

Added PC-Compatible Bindings

07/93 2.1 PCMCIA 2.1/JEIDA 4.2 Editorial corrections

02/95 5.0 February 1995 (5.0)
Release

Added support for CardBus PC Cards

03/95 N/A March 1995 (5.01) Update None

05/95 N/A May 1995 (5.02) Update None

11/95 5.1 November 1995 (5.1)
Update

Added Custom Interface Support

Editorial Corrections

05/96 N/A May 1996 (5.2) Update None

03/97 6.0 6.0 Release Added Hot Dock/Undock Support

Editorial Corrections

04/98 6.1 6.1 Update Added Packet Interface

02/99 7.0 7.0 Release None

03/00 7.1 7.1 Update None

11/00 7.2 7.2 Update None

04/01 8.0 8.0 Release None

©2001 PCMCIA/JEITA

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
mechanical, electronic, photocopying, recording or otherwise, without prior written permission of PCMCIA and JEITA.
Published in the United States of America.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA iii

CONTENTS

1. Introduction___ 1
1.1 Purpose ...1

1.2 Scope..1

1.3 Related Documents ...1

2. Overview ___ 3
3. Functional Description _________________________________ 5

3.1 System Architecture ..5

3.2 Initialization ...5

3.3 Configuration...5

3.4 Status Change Notification ..6

3.5 Power Management ..6

3.6 Docking...6

3.7 Overview of Services ..7
3.7.1 Non-specific Service... 7

3.7.2 Adapter Services... 7

3.7.3 Socket Services.. 8

3.7.4 Window Services.. 8

3.7.5 Error Detection and Correction Services... 8

3.7.6 Status Change Handling ... 8

3.7.7 Reserved Services ... 9

4. Assumptions and Constraints __________________________ 11
4.1 ROM Located ...11

4.2 Hardware Implementation ..11

4.3 Adapters Supported..11

4.4 Sockets Supported ...11

4.5 Windows Supported ...12

4.6 EDC Generators ...13

4.7 Power Management and Indicators ...13

4.8 Calling Conventions ...13
4.8.1 Reserved Fields... 13

4.8.2 Register Usage .. 13

CONTENTS

iv ©2001 PCMCIA/JEITA

4.9 Socket Services Generally Not Re-entrant ...14

4.10 Critical Areas and Disabled Interrupts ...14

4.11 Request Rejection ...14

5. Program Interface ____________________________________ 15
5.1 Presence Detection ..15

5.2 Data Types..15

5.3 Service Descriptions..17
5.3.1 AccessConfigurationSpace [PC32]... 18

5.3.2 AcknowledgeInterrupt [BOTH] ... 19

5.3.3 GetAccessOffsets [PC16] ... 21

5.3.4 GetAdapter [BOTH]... 23

5.3.5 GetAdapterCount [BOTH].. 24

5.3.6 GetBridgeWindow [BOTH] .. 25

5.3.7 GetEDC [BOTH]... 27

5.3.8 GetPage [PC16]... 28

5.3.9 GetSetPriorHandler [BOTH]... 30

5.3.10 GetSetSSAddr [BOTH] .. 32

5.3.11 GetSocket [BOTH].. 35

5.3.12 GetSSInfo [BOTH] .. 38

5.3.13 GetStatus [BOTH]... 39

5.3.14 GetVendorInfo [BOTH]... 41

5.3.15 GetWindow [PC16] .. 42

5.3.16 InquireAdapter [BOTH].. 44

5.3.17 InquireBridgeWindow [BOTH].. 48

5.3.18 InquireEDC [BOTH] .. 54

5.3.19 InquireSocket [BOTH] ... 56

5.3.20 InquireWindow [PC16] ... 59

5.3.21 PauseEDC [BOTH]... 67

5.3.22 ReadEDC [BOTH] .. 68

5.3.23 ResetSocket [BOTH]... 69

5.3.24 ResumeEDC [BOTH] ... 70

5.3.25 SetAdapter [BOTH].. 71

5.3.26 SetBridgeWindow [BOTH] ... 73

5.3.27 SetEDC [BOTH].. 75

5.3.28 SetPage [PC16].. 76

5.3.29 SetSocket [BOTH]... 78

5.3.30 SetWindow [PC16]... 81

5.3.31 StartEDC [BOTH]... 83

5.3.32 StopEDC [BOTH] ... 84

5.3.33 VendorSpecific [BOTH]... 85

6. Using Socket Services_________________________________ 87

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA v

6.1 Determining Socket Services Resources...87

6.2 Status Change Handling ..87

6.3 Bus-Expanders or Docking Stations ...88

6.4 Using XIP..88

6.5 Power Management ..88

7. Service Codes __ 89
8. Return Codes___ 91
9. Socket Services Bindings ______________________________ 93

9.1 Overview ..93

9.2 Presence Detection and Installation Notification ...93

9.3 Making Socket Services Requests ...93

9.4 Argument Passing...94

9.5 Power Management and Indicators ...94

9.6 x86 Architecture Binding..94
9.6.1 Overview ... 94

9.6.2 Presence Detection ... 95

9.6.3 Installation Notification... 95

9.6.4 Making Socket Services Requests... 96

9.6.5 Argument Passing.. 96

9.6.5.1 CPU Register Interface Usage... 96

9.6.5.2 Packet Interface Usage... 98

9.6.5.2.1 Overview ... 98

9.6.5.2.2 Packet Interface - real-mode x86... 99

9.6.5.2.3 Packet Interface - OS/2 .. 99

9.6.5.2.4 Packet Interface - Win-16... 100

9.6.5.2.5 Packet Interface - Win32 VxD ... 101

9.6.6 Assumptions and Constraints .. 102

9.6.6.1 ROM BIOS Located .. 102

9.6.6.2 Adapters Supported... 102

9.6.6.3 EDC Generators .. 102

9.6.6.4 Sockets Supported .. 102

9.6.6.5 Windows Supported .. 102

9.6.7 Individual Service Bindings.. 103

9.6.7.1 CPU Register Usage Bindings... 103

9.6.7.1.1 AccessConfigurationSpace .. 103

9.6.7.1.2 AcknowledgeInterrupt .. 103

9.6.7.1.3 GetAccessOffsets .. 104

9.6.7.1.4 GetAdapter .. 104

CONTENTS

vi ©2001 PCMCIA/JEITA

9.6.7.1.5 GetAdapterCount... 105

9.6.7.1.6 GetBridgeWindow ... 105

9.6.7.1.7 GetEDC .. 106

9.6.7.1.8 GetPage.. 106

9.6.7.1.9 GetSetPriorHandler.. 106

9.6.7.1.10 GetSetSSAddr.. 107

9.6.7.1.11 GetSocket ... 109

9.6.7.1.12 GetSSInfo ... 110

9.6.7.1.13 GetStatus.. 110

9.6.7.1.14 GetVendorInfo .. 110

9.6.7.1.15 GetWindow ... 111

9.6.7.1.16 InquireAdapter ... 111

9.6.7.1.17 InquireBridgeWindow... 112

9.6.7.1.18 InquireEDC ... 112

9.6.7.1.19 InquireSocket .. 113

9.6.7.1.20 InquireWindow .. 113

9.6.7.1.21 PauseEDC.. 114

9.6.7.1.22 ReadEDC ... 114

9.6.7.1.23 ResetSocket.. 115

9.6.7.1.24 ResumeEDC .. 115

9.6.7.1.25 SetAdapter... 115

9.6.7.1.26 SetBridgeWindow .. 116

9.6.7.1.27 SetEDC ... 116

9.6.7.1.28 SetPage... 116

9.6.7.1.29 SetSocket .. 117

9.6.7.1.30 SetWindow .. 117

9.6.7.1.31 StartEDC .. 118

9.6.7.1.32 StopEDC .. 118

9.6.7.1.33 VendorSpecific.. 118

9.6.7.2 Packet Usage Bindings .. 119

9.6.7.2.1 AccessConfigurationSpace.. 119

9.6.7.2.2 AcknowledgeInterrupt .. 120

9.6.7.2.3 GetAccessOffsets .. 121

9.6.7.2.4 GetAdapter.. 122

9.6.7.2.5 GetAdapterCount... 123

9.6.7.2.6 GetBridgeWindow ... 124

9.6.7.2.7 GetEDC .. 125

9.6.7.2.8 GetPage.. 126

9.6.7.2.9 GetSetPriorHandler.. 127

9.6.7.2.10 GetSetSSAddr.. 128

9.6.7.2.11 GetSocket ... 130

9.6.7.2.12 GetSSInfo ... 131

9.6.7.2.13 GetStatus.. 132

9.6.7.2.14 GetVendorInfo .. 133

9.6.7.2.15 GetWindow ... 134

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA vii

9.6.7.2.16 InquireAdapter ... 135

9.6.7.2.17 InquireBridgeWindow... 136

9.6.7.2.18 InquireEDC.. 137

9.6.7.2.19 InquireSocket... 138

9.6.7.2.20 InquireWindow... 139

9.6.7.2.21 PauseEDC .. 140

9.6.7.2.22 ReadEDC.. 140

9.6.7.2.23 ResetSocket .. 141

9.6.7.2.24 ResumeEDC... 141

9.6.7.2.25 SetAdapter ... 142

9.6.7.2.26 SetBridgeWindow... 143

9.6.7.2.27 SetEDC ... 144

9.6.7.2.28 SetPage ... 145

9.6.7.2.29 SetSocket .. 146

9.6.7.2.30 SetWindow .. 147

9.6.7.2.31 StartEDC .. 147

9.6.7.2.32 StopEDC... 148

9.6.7.2.33 VendorSpecific .. 148

9.6.8 Assembly Language Definitions .. 149

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA ix

TABLES
Table 7–1 Service Codes–Numerical Order ...89

Table 7–2 Service Codes  Alphabetic Order ..90

Table 8–1 Return Codes  Numerical Order..91

Table 8–2 Return Codes  Alphabetic Order...92

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 1

1. INTRODUCTION

1.1 Purpose
This document describes the software interface provided by PC Card Standard Socket Services. This
interface provides a hardware independent method of managing PC Card sockets in a host system.

1.2 Scope
This document is intended to provide enough information to software developers to utilize PC Card
sockets in a host system without any knowledge of how the actual hardware performs the desired
services. It is also intended to provide enough information for an implementer to create a Socket
Services handler for a particular adapter.

1.3 Related Documents
PC Card Standard Release 8.0 (April 2001), PCMCIA /JEITA

Volume 1. Overview and Glossary
Volume 2. Electrical Specification
Volume 3. Physical Specification
Volume 4. Metaformat Specification
Volume 5. Card Services Specification
Volume 6. Socket Services Specification
Volume 7. PC Card ATA Specification
Volume 8. PC Card Host Systems Specification
Volume 9. Guidelines
Volume 10. Media Storage Formats Specification
Volume 11. XIP Specification

INTRODUCTION

2 ©2001 PCMCIA/JEITA

This Page Intentionally Left Blank

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 3

2. OVERVIEW

Socket Services is the lowest layer in a multi-layer architecture that manages resources on PC Card
Standard compatible memory and I/O cards (collectively known as PC Cards). Socket Services
provides a universal software interface to the hardware that controls sockets for PC Cards. It masks
the details of the hardware used to implement these sockets, allowing higher-level software to be
developed which is able to control and utilize PC Cards without any knowledge of the actual
hardware interface.

Software layers above Socket Services provide additional capabilities. Immediately above Socket
Services is Card Services which arbitrates the use of Socket Services resources. Card Services is
responsible for taking requests from multiple processes and sharing the resources provided by Socket
Services among these processes. In this manner, Card Services may actually provide the same
hardware to different processes allowing the use of the hardware to be time-multiplexed.

For example, if a BPB–FAT partition and a Flash File System partition both reside on a Flash card,
Card Services might provide the same windows into the host system memory address space for both
of the device drivers involved in accessing those partitions. Card Services is responsible for handling
overlapping requests, ensuring that the appropriate partition is available at the right time.

Socket Services approaches the handling of the hardware it manages by addressing it as a number of
objects with different areas of functionality. Adapters are the hardware that connects a host system’s
bus to PC Card sockets. Host systems may have more than one adapter. Socket Services reports the
number of sockets, windows and EDC generators provided by each adapter installed. Adapter power
consumption and status change reporting may be controlled separately for each adapter.

An adapter may have one or more sockets. Sockets are receptacles for PC Cards. Socket Services
describes the characteristics of each socket and allows socket resources to be manipulated and current
settings determined.

Socket Services also provides services to deal with PC Cards. These services report on current card
status, allow data to be read and/or written on 16-bit PC Cards which are not mapped into system
memory address space, and allow configuration space to be read and/or written on CardBus PC
Cards.

For performance reasons, it is often beneficial to map PC Cards into host system memory or I/O
address space. (XIP requires the ability to map PC Card memory arrays into system memory address
space.) Adapters may or may not provide this capability. An area of PC Card memory and/or I/O
address space is mapped into a corresponding host system area through a window. From the Socket
Services perspective, there are three types of hardware that may be involved in mapping a PC Card’s
address space into a host system’s address space.

Adapters for 16-bit PC Cards have windows on the adapter that map PC Card address space into the
host system’s address space. These windows map memory and/or I/O address space. Devices on a
16-bit PC Card are always located at the same PC Card address. The area of a PC Card mapped into a
host system’s address space is determined by a combination of adapter decoding and PC Card
decoding.

Adapters for CardBus PC Cards do not perform any mapping of PC Card address space into a host
system’s address space. Base Address Registers on the PC Card itself are programmed to decode host
system addresses directly.

If an adapter also acts as a bridge to another host system bus, it may have bridge windows. Bridge
windows are used to route a range of host system addresses across the bridge to a PC Card. Bridge

OVERVIEW

4 ©2001 PCMCIA/JEITA

windows are controlled separately from the windows on a 16-bit PC Card adapter or the Base
Address Registers on a CardBus PC Card. If an adapter uses bridge windows, the address ranges
routed by the bridge windows must include the ranges used by 16-bit PC Card adapter windows or
the ranges programmed into the Base Address Registers on a CardBus PC Card.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 5

3. FUNCTIONAL DESCRIPTION

3.1 System Architecture
Socket Services is a software interface to the hardware used to manage PC Card sockets in a host
system. Above Socket Services, an operating system-specific layer known as Card Services virtualizes
Socket Services to allow it to be shared by multiple processes. These processes may include such
things as eXecute-In-Place (XIP), Flash File System (FFS), and other types of device drivers.

Socket Services provides only the lowest level access to PC Cards. For example, Socket Services
allows the 16-bit PC Card attribute memory space to be read, but it does not interpret the Card
Information Structure (CIS).

Socket Services is invoked in a platform dependent manner. All service arguments are passed to
Socket Services in a binding specific fashion. Status of a Socket Services request is returned in the
status argument. (See Appendix-C, 9. Socket Services Bindings.) Using functional notation, a Socket
Services request generically can be considered as:

status = Service(arg1, arg2 ...)

While this notation resembles a C language function call, Socket Services is implemented in an
appropriate manner for its environment. For example, on an x86 architecture platform a ROM BIOS
Socket Services interface is handled through Interrupt 1AH with services based at 80H. A client
simply sets the host processor’s registers for the service desired and executes the Socket Services
software interrupt. Status is returned using the Carry flag ([CF]) and registers specific to the service
invoked.

Special handling is required to be able to write many types of memory cards. It is not feasible to
attempt to include all the necessary handlers within Socket Services for all the possible types of
write/erase routines. Handling of technology-specific write requirements is intended to be performed
by a software layer above Socket Services. Socket Services provides access to the hardware for these
card technology routines.

3.2 Initialization
Socket Services is internally initialized during installation and no specific installation is required by
the client before making service requests. It is expected the client of Socket Services will check the
Socket Services Compliance to determine the level of service available. (See 5.3.12 GetSSInfo

[BOTH].)

3.3 Configuration
The next step is to enumerate the capabilities of the implementation. This entails determining the
number of adapters installed, how many sockets, bridge and 16-bit PC Card windows are supported
by each adapter, and exploring the power management and indicators available for each adapter.

As noted above, it is expected that Socket Services is virtualized by Card Services. Above Card
Services are device drivers for different types of PC Cards. These drivers map PC Cards into system
I/O and/or memory space to implement their functions. Multiple drivers may share PC Cards and
sockets and may even share windows. Card Services arbitrates requests for Socket Services resources
and is responsible for preserving any state information required to share these resources.

FUNCTIONAL DESCRIPTION

6 ©2001 PCMCIA/JEITA

3.4 Status Change Notification
A Socket Services client may desire notification when a status change occurs. Status changes include,
but are not limited to, the following: card removal or insertion, battery low or dead, and READY
changes. Socket Services supports steering and enabling status change interrupts from an adapter. A
client installs a status change interrupt handler on the host interrupt level selected to receive such
interrupts. A client may choose to poll for changes in socket and card status.

When an adapter configured for status change interrupts detects a status change, it generates an
interrupt which invokes the client’s status callback handler. This handler uses the Socket Services
AcknowledgeInterrupt service to determine which socket or sockets experienced the status change. It
records this information and completes the hardware interrupt processing. Later, during background
processing, the client notes which sockets require attention and uses the GetStatus service to
determine current PC Card and socket state. This state is used to determine what action should be
taken by the client. Status change interrupt handling is provided by Card Services. (See the Card
Services Specification.)

3.5 Power Management
The Socket Services interface provides controls for conserving adapter power. Two power
conservation modes are provided: reduced with all state information maintained and reduced
without state information being maintained. These levels are established with the SetAdapter service.

Socket Services may also be used to manage power to PC Card sockets. Independent controls and
levels are provided for VCC, VPP1 and VPP2. Since available power levels are generally limited,
Socket Services provides a list of supported levels and then allows power adjustment based on an
index into that list. Power management is performed at the socket level. How Socket Services resolves
power management requests in hardware implementations that only allow control of power at the
adapter level is vendor specific. Socket Services reports the level of power management control
available through the InquireAdapter service.

3.6 Docking
Whether or not Socket Services is dynamically loaded (or unloaded) there is a general sequence of
things that Socket Services needs to perform in order to handle dock events. Considering all possible
dock scenarios Socket Services really is performing one of three actions: add support (dock where
new controllers are present requiring new Socket Services handlers), remove support (undock where
controllers are gone requiring removal of Socket Services handlers) or change/replace support (either
dock or undock using same socket services instance). This leads to the following sequences for
communications between Socket Services and Card Services:

I. Replace Support

A. Socket Services issues ReplaceSocketServices to Card Services w/ Base log. Socket #
(obtained via MapPhyLogSocket) and number of sockets to replace. Until Socket Services
receives GetSetPriorHandler or Card Services returns from ReplaceSocketServices this
Socket Services rejects any request (except GetSSInfo, see below for more info) w/ BUSY
return code.

B. Upon receipt of GetSetPriorHandler

1. If previous is NULL then return w/ adapter 0; else,

2. Add itself as supporting next adapter (if any such adapter exists that needs support else
may take steps to remove itself from memory if environment supports this).

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 7

C. Receives return from ReplaceSocketServices request.

D. Receives and processes normal “initialization” requests from Card Services.

II. Add Support

A. Socket Services issues AddSocketServices to Card Services

B. Socket Services receives GetSetPriorHandler and before returning numbers his adapter (via
GetSSInfo) and return

C. Returns proper data to GetSSInfo

D. Receives return from AddSocketServices

E. Receives and processes normal “initialization” requests from Card Services.

III. Remove Support

A. Use same logic flow as Replace Support except return zero (0) supported adapters for
GetSSInfo request.

NOTE: The GetSetPriorHandler request is used by Card Services implementations
that expect Socket Services handlers to track the chain of handlers. Some
Card Services implementations will track the handlers themselves and in this
situation Socket Services may not receive any GetSetPriorHandler requests
during processing of dock events.

3.7 Overview of Services

3.7.1 Non-specific Service
There is one Socket Services service which applies to the interface in general and not to any objects
manipulated by the interface. It is:

GetAdapterCount

3.7.2 Adapter Services
Socket Services addresses adapters with the following services:

AcknowledgeInterrupt GetSSInfo

GetSetPriorHandler GetVendorInfo

GetSetSSAddr InquireAdapter

GetAccessOffsets SetAdapter

GetAdapter VendorSpecific

FUNCTIONAL DESCRIPTION

8 ©2001 PCMCIA/JEITA

3.7.3 Socket Services
Socket Services addresses sockets with the following services:

GetSocket ReSetSocket

GetStatus SetSocket

InquireSocket AccessConfigurationSpace

3.7.4 Window Services
Socket Services addresses windows with the following services:

GetBridgeWindow SetBridgeWindow

GetPage SetPage

GetWindow SetWindow

InquireWindow InquireBridgeWindow

WARNING:

Windows which map 16-bit PC Cards into host system memory address space
may have one or more pages. If a Window contains multiple pages, each page
must be 16 KBytes and windows must be sized as a multiple of the 16 KByte
page size.

3.7.5 Error Detection and Correction Services
Adapters and/or Sockets may optionally provide error detection and correction support. The
following services handle EDC capabilities:

GetEDC ResumeEDC

InquireEDC SetEDC

PauseEDC StartEDC

ReadEDC StopEDC

3.7.6 Status Change Handling
Socket Services provides for asynchronous notification when a socket’s status changes. Each adapter
may provide a hardware interrupt when there is a status change. This interrupt is processed by a
handler installed by the Socket Services client.

While only one interrupt per adapter is anticipated, the Socket Services interface allows status
changes to be masked on a per socket basis. Masking must be performed in hardware since the
hardware interrupt is handled directly by the Socket Services client.

If status change interrupts are supported, each Socket Services client determines which interrupt it
uses for status changes based on the set of supported interrupts reported by InquireAdapter. A
Socket Services client may enable or disable this capability and may steer the interrupt to a supported
host interrupt level.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 9

3.7.7 Reserved Services
Depending on the binding, some Socket Services service codes may be reserved for historical reasons
and should not be used. If a client uses one of these service codes, an implementation should return
BAD_SERVICE.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 11

4. ASSUMPTIONS AND CONSTRAINTS

4.1 ROM Located
The Socket Services interface is intended to allow the handler to be located in ROM on a host
platform. To promote this capability, the use of RAM to store status and/or state information is
minimized.

4.2 Hardware Implementation
While the Socket Services interface has been developed to mask the details of the actual hardware
used to implement PC Card sockets, some hardware implementations do provide advantages. As
noted above, Socket Services is intended to be located in ROM. This requires that the amount of RAM
used by Socket Services is as small as possible. Using hardware registers which are read/write, rather
than write-only, allows state information to be determined by reading the hardware and not by
maintaining RAM-based copies of values previously written to write-only registers.

Another area where hardware implementation can simplify or complicate Socket Services is status
reporting. Hardware registers that are automatically reset when read force Socket Services to keep
RAM-based copies of values read to ensure status information is not lost when read by routines not
interested in the particular status returned. On the other hand, if status registers require explicit
resets, status information is maintained until acknowledged by the appropriate software routine. This
provides a positive acknowledgment that the status condition has been noted and resolved. For the
same reason, if multiple status bits reside in the same register, they must be able to be reset on an
individual basis.

4.3 Adapters Supported
The Socket Services interface allows multiple adapters containing one or more PC Card sockets. The
actual number of adapters supported is limited by several factors. These include: the specifics of the
platform binding, the constraints imposed by locating Socket Services in ROM, and a particular
vendor’s implementation.

Adapters are numbered from zero (0) to the maximum (one less than the number of adapters installed
as returned by GetAdapterCount).

4.4 Sockets Supported
The Socket Services interface allows multiple PC Card sockets per adapter. The maximum number of
sockets an adapter can support is primarily limited by the fact that a bit-map of assignable sockets is
returned by the InquireWindow service. As with adapters, the constraints imposed by locating
Socket Services in ROM may impose a smaller limit on the number of sockets supported. An adapter
may support any number of sockets, from one to the theoretical maximum imposed by the number of
bits in the field used to return the bit-map of assignable sockets. If a system has more than one
adapter, each adapter may support a different number of sockets.

Sockets are numbered from zero (0) to one less than the number on the adapter (as returned by
InquireAdapter). The maximum number of sockets that may be supported depends on the Socket
Services binding.

ASSUMPTIONS AND CONSTRAINTS

12 ©2001 PCMCIA/JEITA

4.5 Windows Supported
The Socket Services interface is designed without any assumptions about how or whether PC Cards
are mapped into the host’s I/O or memory space. This requires a mechanism to indicate which
windows can be mapped to a particular socket. Socket Services uses a bit-map to return this
information as described in the InquireWindow and InquireBridgeWindow services.

There are two types of windows managed by Socket Services. The InquireAdapter service returns the
number of both types of windows on the adapter.

The first window type supports memory or I/O accesses to a 16-bit PC Card. Hardware on the
adapter performs initial decoding of a host system access. If this access is within the address range of
the window, the window hardware asserts the Card Enable signal to the PC Card socket. This informs
the PC Card that it needs to perform further decoding to respond to the access. 16-bit PC Card
address decoding is a combination of the adapter and PC Card hardware.

The InquireWindow service returns the characteristics of 16-bit PC Card windows. The current
configuration of these windows is returned by the GetWindow service and the window is configured
using the SetWindow service.

CardBus PC Cards do not use this first type of window. CardBus PC Cards perform all address
decoding using Base Address Registers on the card that have been programmed for a specific host
system address range.

The second type of window managed by Socket Services is used only when the PC Card adapter is a
bridge to a host system bus. Bridge windows route a range of host system memory or I/O accesses to
a PC Card socket. 16-bit PC Card address decoding is a combination of window hardware on the
adapter (as noted above) and decoding on the card. CardBus PC Card address decoding is performed
entirely by the card based on value programmed into the card’s Base Address Register(s). The
characteristics of a bridge window are returned by InquireBridgeWindow. The current configuration
is returned by GetBridgeWindow and a bridge window is configured using SetBridgeWindow.

A particular implementation may choose not to provide any mapping of 16-bit PC Cards into the host
system’s I/O or memory space. In this case the number of windows supported by a particular
adapter should be set to zero (0).

If a hardware implementation provides a single window per socket, the InquireAdapter service
indicates the same value as the number of sockets supported by the adapter. If a hardware
implementation allows any of an adapter’s windows to be mapped to any of its sockets, the number
of windows available should be returned. (Do not multiply the number of windows by the number of
sockets, in this case, just use the number of individual windows on the adapter.)

There is no requirement that hardware allow a window to be mapped to more than one socket.
However, the Socket Services interface does not prevent a window from being assignable to more
than one socket. It is assumed that a window is mapped to only one socket at a time. A window may
be shared between sockets if it is specifically remapped between uses by the Socket Services client.

Higher-level software is expected to evaluate the window descriptions returned by Socket Services to
determine capabilities available. Socket Services shall fail requests that are invalid, such as attempting
to map a window to an unsupported socket. As noted above, Socket Services does not consider it an
error to map a window that has been previously mapped. Window mapping state information must
be preserved by the Socket Services client. While Socket Services does not preserve prior state
information, the client may request current state information. In this case, the client uses the various
‘Get’ services prior to setting new state with the various ‘Set’ services.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 13

Windows are numbered from zero (0) to one less than the number on the adapter (as returned by
InquireAdapter). The maximum number of windows that may be supported depends on the Socket
Services binding.

4.6 EDC Generators
Error Detection Code generators are optional. EDC generators are numbered from zero (0) to one less
than the number on the adapter (as returned by InquireAdapter). The maximum number of EDC
generators that may be supported depends on the Socket Services binding.

4.7 Power Management and Indicators
Power management and indicators may be available on a per adapter or per socket basis. To provide
a consistent interface, Socket Services provides access to these services on a socket basis. It is expected
that a hardware implementation that only provides power management and/or indicator control at
the adapter level shall provide a Socket Services handler that manages those resources for the entire
adapter based on requests to individual sockets.

Socket Services does indicate whether power management and indicator control is performed at the
adapter or socket level. However, by providing only one control point (the socket), a client of Socket
Services is not required to provide two types of controlling routines.

4.8 Calling Conventions
The Socket Services interface uses a common set of conventions for all services. They are described
below.

4.8.1 Reserved Fields
Any reserved fields or undefined bits in entry fields may be ignored by a handler implementing this
release of Socket Services. However, reserved fields and undefined bits should be reset to zero before
invoking a Socket Services service because future releases of Socket Services may define them. Future
releases will use the reset value for behavior compliant with this release of Socket Services.

Any reserved fields or undefined bits in fields returned by Socket Services are reset to zero by Socket
Services so future releases of Socket Services will be able to notify clients in a manner compliant with
this release.

4.8.2 Register Usage
The use of registers to pass arguments and return status is specific to the binding defined for the host
platform. See the appropriate binding for register usage conventions. Please note that conventions are
guidelines used to develop the service interfaces and exceptions have been made in specific cases.

Whenever possible the interface preserves the contents of all arguments unless they are used to return
information. For bit-mapped fields, bits within a field (or register) are numbered beginning with zero.
The location of Bit 0 in a field is binding specific.

ASSUMPTIONS AND CONSTRAINTS

14 ©2001 PCMCIA/JEITA

4.9 Socket Services Generally Not Re-entrant
Except for the AcknowledgeInterrupt service, Socket Services is not intended to be re-entrant.
Attempting any other Socket Services service while there is a thread of execution within Socket
Services may be invalid depending on the implementation. Should a client attempt to re-enter Socket
Services for any request other than AcknowledgeInterrrupt, the request may be failed returning
BUSY.

4.10 Critical Areas and Disabled Interrupts
Socket Services handlers should strive to minimize the amount of time interrupts are disabled.
However, a Socket Services handler NEVER enables interrupts during AcknowledgeInterrupt
processing.

4.11 Request Rejection
Socket Services validates all parameters before changing any hardware. A client is assured that if a
request is rejected due to an invalid parameter, no hardware changes have been made based on the
request.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 15

5. PROGRAM INTERFACE

5.1 Presence Detection
The presence of Socket Services is determined by performing the GetAdapterCount request. (See
5.3.5 GetAdapterCount [BOTH].) If this service returns with a RETCODE other than SUCCESS,
the client may assume that services provided by Socket Services are not available. If it returns
SUCCESS in the status field and the ASCII characters 'SS' in the Signature field, at least one Socket
Services handler is installed.

5.2 Data Types
Socket Services uses a number of defined data types to describe arguments and return codes. Each
Socket Services binding describes how these types are defined within the binding. The data types
used to describe service parameters are listed below:

Data Type Meaning

ADAPTER Specifies a physical adapter. Ranges from zero to one less than the number of adapters present in the
host system as reported by GetAdapterCount.

BASE Describes the base address of a window used to map a PC Card’s address space into a host system's
address space.

BCD Binary Coded Decimal value. For example, 0221H represents 2.21.

BYTE An 8-bit quantity.

COUNT Number of objects of the specified type.

DWORD A 32-bit quantity.

Double Word A 32-bit quantity, see DWORD.

EDC Specifies an Error Detection Code generator. Ranges from zero to one less than the number of EDC
generators on the adapter as reported by InquireAdapter.

FLAGS8 Bit-mapped field with up to 8 significant bits.

FLAGS16 Bit-mapped field with up to 16 significant bits.

FLAGS32 Bit-mapped field with up to 32 significant bits.

IRQ IRQ status or control. Includes host system IRQ level, active level (low or high) and state (enabled or
disabled).

OFFSET An address in any of the PC Card’s memory address spaces. For a 16-bit PC Card this includes both the
attribute and common memory plane. For a CardBus PC Card this includes configuration space, any of
the 6 possible memory spaces and the expansion ROM.

PAGE Subdivision of a window. Ranges from zero to one less than the number of pages in a window. Windows
may be a single page of any size or multiple pages of 16 KBytes.

PTR A pointer to a location in system memory.

PWRENTRY An entry in an array of items returned by InquireAdapter. Describes a specific power level and its valid
signals (VCC, VPP1 and VPP2).

PWRINDEX Index into power management table. Ranges from zero to one less than the number of power levels in the
array of PWRENTRY items returned by InquireAdapter.

RETCODE Value returned by Socket Services when a service has been processed.

SIGNATURE Two ASCII characters ('SS') used to validate a Socket Services handler is installed.

SIZE The size of a window. Memory and I/O windows may use different units.

SKTBITS Bit-map of valid sockets to which window or EDC generator may be assigned.

SOCKET Specifies a physical socket. Ranges from zero to one less than the number of sockets on an adapter as
reported by InquireAdapter.

PROGRAM INTERFACE

16 ©2001 PCMCIA/JEITA

Data Type Meaning

SPEED Encoded value representing a memory window access speed. (See the Metaformat Specification.)

WINDOW Specifies a physical window. Ranges from zero to one less than the number of windows on an adapter as
reported by InquireAdapter.

WORD A 16-bit quantity.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 17

5.3 Service Descriptions
Each Socket Services service is described in detail on the following pages. The descriptions are
intended to be processor and operating system independent. Specific bindings for particular
environments are specified in appendices to this specification.

Service names are constructed from an action verb and a noun. The noun identifies the type of object
being manipulated. If the verb is Inquire the capabilities of the object are returned by the service. If
the verb is Get the current configuration of the item is returned. If the verb is Set the item is
configured by the service.

The following notation conventions are used:

Convention Meaning

bold Bold type is used for keywords. For example, the names of services, data types, structures, and macros.
These names are spelled exactly as they should appear in source programs. Defined data types are also
in uppercase.

italics Italic type is used to indicate the name of an argument. The name must be replaced by an actual
argument. Italics are also used to show emphasis in text.

monospace Monospace type is used for example program code fragments.

ALL_UPPER Type in all uppercase is used to indicate a constant value with the exception that defined data types are all
uppercase and bold.

The description of each service begins with a heading that contains the service name as described
above on the left and an indicator on the right as follows:

[PC16] Service only applies to 16-bit PC Cards

[PC32] Service only applies to CardBus PC Cards

[BOTH] Service applies to both 16-bit PC Cards and CardBus PC Cards

PROGRAM INTERFACE

18 ©2001 PCMCIA/JEITA

5.3.1 AccessConfigurationSpace [PC32]
RETCODE = AccessConfigurationSpace (Adapter, Socket, Function, Action, Location, Data)

ADAPTER Adapter;
SOCKET Socket;
BYTE Function;
FLAGS8 Action;
OFFSET Location;
FLAGS32 Data;

Provides an interface for Card Services to read and write values in CardBus configuration space. This
is used to support the Card Services AccessConfigurationRegister service as well as to allow Card
Services to allocate windows for CardBus PC Card functions by writing to the function’s Base
Address Registers.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Socket I Specifies a physical socket on the adapter.

Function I Specifies the card function whose configuration space is to be accessed.

Action I The READ (00H) or WRITE (01H) operation to be performed.

Location I The offset into the function’s configuration space where the data is to be obtained or
written. This value must be aligned on a four-byte boundary.

Data I/O If Action is READ, this field returns the data read. If Action is WRITE, this field contains
the data to be written. This field always contains a DWORD value.

Return Codes
SUCCESS Operation was successful

BAD_ADAPTER Specified Adapter is invalid

BAD_ATTRIBUTE Specified Action is not READ or WRITE.

BAD_OFFSET Location is beyond the legal configuration space or is not aligned on a four
byte boundary.

BAD_SOCKET Specified Socket and/or Function is invalid

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 19

5.3.2 AcknowledgeInterrupt [BOTH]
RETCODE = AcknowledgeInterrupt (Adapter, Sockets)

ADAPTER Adapter;
SKTBITS Sockets;

The AcknowledgeInterrupt service returns information about which socket or sockets on the adapter
specified by the input parameters has experienced a change in status.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Sockets O Returns a bit-map representing the sockets which have experienced a status change,
e.g. 0021H indicates sockets 0 and 5.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

Comments
A Socket Services client enables status change interrupts from adapter hardware with the SetAdapter
service. The client is responsible for installing an interrupt handler on the appropriate vector. Specific
events are masked or unmasked on a per socket basis using the SetSocket service. When a status
change occurs, the handler installed by the client receives control. For each adapter capable of
generating that interrupt, the interrupt handler makes an AcknowledgeInterrupt request.

The AcknowledgeInterrupt request allows Socket Services to prepare the adapter hardware for
generating another interrupt if another status change occurs. Socket Services also informs the client
which socket or sockets have experienced a status change. Socket Services must preserve state
information relating to the cause of the status change interrupt if it is not preserved by the adapter
hardware. This information will later be requested with the GetStatus service.

After polling all possible adapters with the AcknowledgeInterrupt request, the client’s interrupt
handler prepares the host system for another status change interrupt for the adapter. Some time later,
outside of the hardware interrupt handler, the client polls Socket Services for new socket state using
GetStatus. This service returns a combination of socket and card state information.

By separating the acknowledgment of the interrupt from the retrieval of specific socket and card
status, the client may reduce the amount of RAM required to store state information. The client may
elect to recover state information only when it is able to fully process the information. In this manner,
a client only needs to evaluate complete state information for one socket at a time.

Note: Since adapters may share a status change interrupt, it is possible for this
service to be called even if no status change has occurred on the adapter
specified. In this case, Socket Services returns indicating success with all bits
in Sockets reset to zero (0).

PROGRAM INTERFACE

20 ©2001 PCMCIA/JEITA

WARNING:

AcknowledgeInterrupt takes place within the status change hardware
interrupt. Socket Services must not enable interrupts at any time during the
processing of an AnknowledgeInterrupt request.

See Also GetStatus

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 21

5.3.3 GetAccessOffsets [PC16]
RETCODE = GetAccessOffsets (Adapter, Mode, NumDesired, pBuffer, NumAvail)

ADAPTER Adapter;
BYTE Mode;
COUNT NumDesired;
PTR pBuffer;
COUNT NumAvail;

The GetAccessOffsets service fills the buffer pointed to by pBuffer with an array of offsets for low-
level, adapter-specific, optimized PC Card access routines for adapters using register-based (I/O
port) access to PC Card memory address space. Adapters which access PC Card memory address
space through windows mapped into host system memory address space do not support this service.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Mode I Specifies the processor mode. This is specific to the type of host platform. See the
platform-specific binding for additional detail.

NumDesired I Specifies the number of access offsets desired. Indirectly specifies the size of the client-
supplied buffer.

pBuffer I A pointer to a client-supplied buffer for the array of access offsets. NumDesired specifies
the number of entries that will fit in the buffer.

The offsets are specific to the type of host platform. See the platform-specific bindings
for additional details.

NumAvail O Returns the number of access offsets supported by this Socket Services handler for the
specified adapter.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

BAD_SERVICE if request is not supported

BAD_MODE if Mode is not supported

Comments
All of these offsets are in the Socket Services code segment. All sockets on an adapter must use the
same entry points for a mode. However, these offsets may vary depending upon the mode specified.

A client uses the returned values to create the MAT passed to MTDs which allows these routines to be
called in a manner appropriate to the mode in which they will be used.

There is no requirement that an implementation support every possible mode. If a mode is not
supported, this request should return BAD_MODE.

PROGRAM INTERFACE

22 ©2001 PCMCIA/JEITA

Offsets for the access routines are returned in the following order:

Set Address

Set Auto Increment

Read Byte

Read Word

Read Byte with Auto Increment

Read Word with Auto Increment

Read Words

Read Words with Auto Increment

Write Byte

Write Word

Write Byte with Auto Increment

Write Word with Auto Increment

Write Words

Write Words with Auto Increment

Compare Byte

Compare Byte with Auto Increment

Compare Words

Compare Words with Auto Increment

Definitions for the arguments passed to the above access routines are binding specific. (See the Card
Services Specification.)

See Also GetSetSSAddr

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 23

5.3.4 GetAdapter [BOTH]
RETCODE = GetAdapter (Adapter, State, SCRouting)

ADAPTER Adapter;
FLAGS8 State;
IRQ SCRouting;

The GetAdapter service returns the current configuration of the specified adapter.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

AdapterState O Current state of the adapter hardware. This parameter can be a combination of the
following values:

Value Meaning

AS_POWERDOWN If set, adapter hardware is attempting to conserve power.
Before using adapter, full power must be restored using the
SetAdapter service.

If reset, adapter hardware is fully powered and fully functional.

AS_MAINTAIN If set, all adapter and socket configuration information is
maintained while power consumption is reduced.

If reset, adapter and socket configuration information must be
maintained by the client.

This value is only valid if the AS_POWERDOWN value is set.

SCRouting O Returns status change interrupt routing status. This parameter is an IRQ data type. It is a
combination of a binary value representing the IRQ level used for routing the status
change signal and the following optional bit-masks:

Value Meaning

IRQ_HIGH If set, status change interrupt is active-high.

If reset, status change interrupt is active-low.

IRQ_ENABLE If set, status change interrupt is enabled. If an unmasked status
change event occurs, the adapter generates a hardware
interrupt of the specified level.

If reset, status change interrupts are not generated by the
adapter.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

Comments
Preserving state information may not allow the same level of power reduction as not preserving state
information. The ability to reduce power consumption is vendor specific and reduced power settings
may not result in any power savings.

All parameters have been designed to map directly to the values required for the SetAdapter service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
this service, make changes and then use the SetAdapter service to modify the configuration without
having to create initial values for each parameter.

See Also InquireAdapter, SetAdapter

PROGRAM INTERFACE

24 ©2001 PCMCIA/JEITA

5.3.5 GetAdapterCount [BOTH]
RETCODE = GetAdapterCount (TotalAdapters, Signature)

COUNT TotalAdapters;
SIGNATURE Signature;

The GetAdapterCount service returns the number of adapters supported by all Socket Services
handlers in the host system. It is also used to determine if one or more Socket Services handlers are
installed.

Parameter I/O Description

TotalAdapters O Number of adapters in host environment, if there is a Socket Services handler installed.
Must return the total number of adapters in the system, including both 16-bit PC Card-
only and CardBus PC Card adapters.

Signature O If RETCODE is set to SUCCESS and this field is set to the ASCII characters 'SS' on
return, there is at least one Socket Services handler installed and TotalAdapters is set to
the number of adapters in the host environment.

Comments
The client should ensure Signature does not contain 'SS' before calling this service. This ensures the
client does not use TotalAdapters if the routine handling the request does not support Socket Services
but still returns SUCCESS.

If a Socket Services handler is not installed, the returned parameters are undefined. Most
environments return an undefined value not equal to SUCCESS. However, an environment may use a
calling mechanism shared with another, unrelated handler. There is no guarantee the other handler
will properly reject an unrecognized Socket Services request. Before accepting the value in
TotalAdapters as the number of adapters installed, the client must confirm Signature contains the
ASCII characters 'SS'.

Even if a Socket Services handler is present, there might not be any adapter hardware present. In this
case, SUCCESS is returned, Signature contains 'SS' and TotalAdapters is zero (0). Clients must be
prepared for this situation.

Return Codes
SUCCESS if Adapter is valid

See Also GetSSInfo

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 25

5.3.6 GetBridgeWindow [BOTH]
RETCODE = GetBridgeWindow (Adapter, Window, Socket, Size, State, Base)

ADAPTER Adapter;
WINDOW Window;
SOCKET Socket;
SIZE Size;
FLAGS8 State;
BASE Base;

The GetBridgeWindow service returns the current configuration of the bridge window specified by
the input parameters. If present on the adapter, PC Card bridge windows are required to allow access
to devices on PC Cards.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Specifies a bridge window on the adapter.

Socket O Physical socket to which the bridge window is currently assigned.

Size O Returns the window's current size in bytes.

State O Defined as below. Current state of the window hardware. This parameter can be a
combination of the following values:

Value Meaning

WS_IO If set, this bridge window routes host system I/O accesses to
the PC Card socket.

If reset, this bridge window routes host system memory
accesses to the PC Card socket.

WS_ENABLED If set, the bridge window is enabled and routing host system
accesses to a PC Card socket.

If reset, the bridge window is disabled.

WS_PREFETCH If set, the bridge window’s prefetch hardware is enabled.

If reset, the bridge window’s prefetch hardware is not enabled
(or does not exist).

WS_CACHABLE If set, the bridge window’s cache coherency and prefetch
hardware are enabled.

If reset, the bridge window’s cache coherency hardware is not
enabled (or does not exist).

Note: All cachable windows are prefetchable.

Base O Returns the current base address of the specified bridge window. It is the first address
within the host system memory or I/O address space routed to the PC Card socket.

Return Codes
SUCCESS if Adapter and Window are valid

BAD_ADAPTER if Adapter is invalid

BAD_WINDOW if Window is invalid

Comments
All parameters have been designed to map directly to the values required for the SetBridgeWindow
service. This is intended to allow clients of Socket Services to retrieve current configuration

PROGRAM INTERFACE

26 ©2001 PCMCIA/JEITA

information with this service, make changes and then use the SetBridgeWindow service to modify
the configuration without having to create initial values for each parameter.

See Also InquireBridgeWindow, SetBridgeWindow, InquireWindow, GetWindow, SetWindow,
AccessConfigSpace.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 27

5.3.7 GetEDC [BOTH]
RETCODE = GetEDC (Adapter, EDC, Socket, State, Type)

ADAPTER Adapter;
EDC EDC;
SOCKET Socket;
FLAGS8 State;
FLAGS8 Type;

The GetEDC service returns the current configuration of the EDC generator specified by the input
parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Socket O Returns the physical socket on the adapter that the EDC generator is assigned.

State O Returns the current state of the EDC generator. This field may be combination of the
following values:

Value Meaning

EC_UNI If set, EDC generator is computing in only one direction.
EC_WRITE determines whether computation is on read or write
accesses.

If reset, EDC generator is computing on both read and write
accesses.

EC_WRITE If set, EDC generator is computing only on write accesses.

If reset, EDC generator is computing only on read accesses.

This value is only valid if EC_UNI is set.

Type O Returns type of EDC generated. This parameter may be one of the following values:

Value Meaning

ET_CHECK8 EDC generated is 8-bit checksum.

ET_SDLC16 EDC generated is 16-bit CRC-SDLC.

ET_SDLC32 EDC generated is 32-bit CRC-SDLC.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

Comments
All parameters have been designed to map directly to the values required by the SetEDC service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
this service, make changes and then use SetEDC to modify the configuration without having to create
initial values for each parameter.

See Also InquireEDC, SetEDC, StartEDC, PauseEDC, ResumeEDC, StopEDC, ReadEDC

PROGRAM INTERFACE

28 ©2001 PCMCIA/JEITA

5.3.8 GetPage [PC16]
RETCODE = GetPage (Adapter, Window, Page, State, Offset)

ADAPTER Adapter;
WINDOW Window;
PAGE Page;
FLAGS8 State;
OFFSET Offset;

The GetPage service returns the current configuration of the page specified by the input parameters.
It is only valid for memory windows (WS_IO is reset for the window).

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Specifies a physical window on the adapter.

Page I Specifies the page within the Window.

State O Current state of the Page within the Window. This parameter can be a combination of
the following values:

Value Meaning

PS_ATTRIBUTE If set and Page is enabled, PC Card attribute memory is
mapped into host system memory space.

If reset and Page is enabled, PC Card common memory is
mapped into host system memory space.

PS_ENABLED If set, Page is enabled and PC Card is mapped into the host
system memory or I/O space.

If reset, Page is disabled.

Some hardware implementations may not allow individual
pages to be disabled, only entire windows. Such
implementations always return with PS_ENABLED set unless
the entire window is disabled.

PS_WP If set, Page is write-protected by page mapping hardware in
socket.

If reset, Page is not write-protected by socket’s page-mapping
hardware. However, PC Card memory may be write-protected
in other ways.

Offset O The offset of a PC Card’s memory being mapped into host system memory space by this
page. The following formula may be used to calculate the system memory address to
access the PC Card memory being mapped by the page:

Base + (Page * 16 KBytes)

Return Codes
SUCCESS if Adapter, Page and Window are valid

BAD_ADAPTER if Adapter is invalid

BAD_PAGE if Page is invalid

BAD_WINDOW if Window is invalid

Comments
All parameters have been designed to map directly to the values required for the SetPage service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
this service, make changes and then use the SetPage service to modify the configuration without
having to create initial values for each parameter.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 29

All pages in windows which are subdivided into multiple pages are 16 KBytes in size. A window
with only a single page may be any size meeting the constraints returned by InquireWindow.

To map PC Card memory into system memory requires that both the WS_ENABLED value of the
State field used by Get/SetWindow be set and the PC_ENABLED value of the State field used by
Get/SetPage be set. For windows with WS_PAGED reset, the PS_ENABLED value is ignored by
SetPage. The window is enabled and disabled by the WS_ENABLED value of SetWindow. GetPage
for windows with WS_PAGED reset reports the value of WS_ENABLED for PS_ENABLED.

For windows with WS_PAGED set, WS_ENABLED acts as a global enable/disable for all pages
within the window. Once WS_ENABLED has been set using SetWindow, individual pages may be
enabled and disabled using SetPage and PS_ENABLED.

If WC_WENABLE is reported as set by InquireWindow, Socket Services preserves the state of
PS_ENABLED for each page in the window whenever WS_ENABLED is changed by SetWindow. If
WC_ENABLE is reported as reset by InquireWindow, the client must use SetPage to set the
PS_ENABLED state for each page within the window after WS_ENABLED is set with SetWindow.

See Also InquireWindow, GetWindow, SetWindow, SetPage

PROGRAM INTERFACE

30 ©2001 PCMCIA/JEITA

5.3.9 GetSetPriorHandler [BOTH]
RETCODE = GetSetPriorHandler (Adapter, Mode, pHandler)

ADAPTER Adapter;
FLAGS8 Mode;
PTR pHandler;

The GetSetPriorHandler service replaces or obtains the entry point of a prior handler for the Adapter
specified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Mode I Specifies whether the request is to Get the prior handler or Set a new handler.

If Mode is zero, the request is to Get the prior handler,

If Mode is one, the request is to Set the prior handler.

pHandler I/O If Mode is Get (equal to zero), this parameter is ignored on input and used to return the
entry point of the prior handler.

If Mode is Set (equal to one), this parameter contains a pointer to a new prior handler
and is used to return the entry point of the old prior handler.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

BAD_SERVICE if request is to Set a prior handler for a ROM-based handler which is hard-
coded to chain to another type of handler

BAD_MODE if Mode is not supported

Comments
If the handler responding to this request is installed in ROM and is the first handler on the Socket
Services chain, a request to Set the prior handler may be failed.

One reason a Set request would fail is the Socket Services it is addressing is in ROM as the first
extension of another type of handler which is sharing the call chain. In this case, the vector to the
prior handler is probably hard-coded into the ROM and not in RAM prohibiting it from being
updated. This should not cause any difficulty to a client wishing to revise the chain, since this Socket
Services handler may be bypassed by registering the values returned from a Get request to this
Socket Services with a replacement Socket Services handler as its prior handler.

Note: The entry point of the prior handler is always returned, even on Set requests,
if the service succeeds.

WARNING:

This service should only be used with the first adapter serviced by a Socket
Services handler as returned by the GetSSInfo service. If a handler services
more than one adapter, subsequent requests to the handler for adapters other
than the first return the same information and set the same internal data
variables.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 31

WARNING:

To support additional adapters and/or sockets, new Socket Services handlers
should be added to the head of the handler chain. Adjusting internal prior
handler values should be used only to replace a Socket Services handler with an
updated version.

PROGRAM INTERFACE

32 ©2001 PCMCIA/JEITA

5.3.10 GetSetSSAddr[BOTH]
RETCODE = GetSetSSAddr (Adapter, Mode, Subfunc, NumAddData, pBuffer)

ADAPTER Adapter;
BYTE Mode;
BYTE Subfunc;
COUNT NumAddData;
PTR pBuffer;

The GetSetSSAddr service returns code and data area descriptions and provides a way to pass
mode-specific data area descriptors to a Socket Services handler.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Mode I Specifies the processor mode. This is specific to the type of host platform. See the
platform-specific binding for additional detail.

Subfunc I Specifies the type of request.

If Subfunc is zero (0), Socket Services returns a description of the code and main data
areas in the client-supplied buffer.

If Subfunc is one (1), Socket Services returns a description of any additional data areas
in the client-supplied buffer.

If Subfunc is two (2), Socket Services accepts an array of mode-specific pointers to
additional data areas in the client-supplied buffer.

If Subfunc is three (3), Socket Services returns a description of the I/O port range or
ranges used by the adapter hardware managed by Socket Services in the client supplied
buffer.

If Subfunc is four (4), Socket Services returns in the client supplied buffer a description
of the main data area and the code area and entry point that utilizes the packet interface

NumAddData I/O Number of additional data areas.

If Subfunc is zero (0), Socket Services returns the number of additional data areas in this
parameter.

If Subfunc is one (1), the client-supplied buffer returns this number of descriptors for
additional data areas.

If Subfunc is two (2), Socket Services accepts this number of mode-specific pointers to
additional data areas in the client-supplied buffer.

If Subfunc is three (3), the NumAddData field returns the number of I/O address ranges
in this parameter.

If Subfunc is four (4), this field is reserved and must be reset to zero (0).

pBuffer I/O A pointer to a client-supplied buffer of the appropriate length for the request.

If Subfunc is zero (0), Socket Services returns a description of the code and main data
segment in the buffer.

If Subfunc is one (1), Socket Services returns a description of the additional data areas
in the client-supplied buffer.

If Subfunc is two (2), the client-supplied buffer contains mode-specific pointers to
additional data areas as input to Socket Services.

If Subfunc is three (3), the client supplied buffer contains a list of I/O address ranges that
are used to control the sockets for this adapter.

If Subfunc is four (4), Socket Services returns in the buffer a mode-specific entry point
that utilizes the packet interface.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 33

Comments
Some Socket Services handlers may require access to other memory regions than their main data area.
If this is the case, the value in NumAddData reflects the number of unique memory regions the Socket
Services handler needs to address besides the main data segment.

A Card Services using an entry point returned by this service is expected to establish the appropriate
mode-specific pointers to the code and main data area prior to calling the entry point. When using the
entry point returned by this service, the client uses the absolute adapter number within the host
environment. For example, if two Socket Services handlers are installed, with the first handler
supporting two adapters and the second handler supporting three adapters, the client should use
adapter values of zero through one for the first handler and values of two through four for the second
handler.

When Subfunc is zero (0), the buffer pointed to by pBuffer has the following format:

Offset Size Description

00H Double Word 32-bit linear base address of code segment in system memory

04H Double Word Limit of code segment

08H Double Word Entry point offset

0CH Double Word 32-bit linear base address of main data segment in system memory

10H Double Word Limit of data segment

14H Double Word Data area offset

When Subfunc is one (1), there are entries in the client-supplied buffer pointed to by pBuffer returned
for each of the additional data segments. Each entry in the buffer has the following format:

Offset Size Description

00H Double Word 32-bit linear base address of additional data segment

04H Double Word Limit of data segment

08H Double Word Data area offset

When Subfunc is two (2), there are entries in the client-supplied buffer pointed to by pBuffer for each
additional data area. These entries are mode-specific pointers created by the client for each additional
data area. Each entry in the buffer has the following format:

Offset Size Description

00H Double Word 32-bit offset

04H Double Word Selector

08H Double Word Reserved

When Subfunc is three (3), there are entries in the client-supplied buffer pointed to by pBuffer for each
additional data area. Each entry in the buffer has the following format:

Offset Size Description

00H Double Word 32-bit I/O base address for control ports

04H Double Word Number of I/O ports consumed for this entry

PROGRAM INTERFACE

34 ©2001 PCMCIA/JEITA

When Subfunc is four (4), the buffer pointed to by pBuffer has the following format:

Offset Size Description

00H Double Word 32-bit linear base address of code segment in system memory

04H Double Word Limit of code segment

08H Double Word Entry point offset (entry point that utilizes the stack-packet interface)

0CH Double Word 32-bit linear base address of main data segment in system memory

10H Double Word Limit of data segment

14H Double Word Data area offset

WARNING:

This service should only be used with the first adapter serviced by a Socket
Services handler as returned by the GetSSInfo service. If a handler services
more than one adapter, subsequent requests to the handler for adapters other
than the first return the same information and set the same internal data
variables.

Return Codes
SUCCESS if Adapter, Mode, and Subfunc are valid

BAD_ADAPTER if Adapter is invalid

BAD_SERVICE if request is not supported

BAD_MODE if Mode is not supported

BAD_ATTRIBUTES if number of additional data segments specified when Subfunc is one (1) or
two (2) does not equal the number of additional data segments returned when
Subfunc is zero (0)

See Also GetAccessOffsets

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 35

5.3.11 GetSocket [BOTH]
RETCODE = GetSocket (Adapter, Socket, SCIntMask, Vcontrol, VccLevel, VppLevels, State,

CtlInd, IREQRouting, IFType, IFIndex)
ADAPTER Adapter;
SOCKET Socket;
FLAGS8 SCIntMask;
PWRINDEX Vcontrol;
PWRINDEX VccLevel;
PWRINDEX VppLevels;
FLAGS8 State;
FLAGS8 CtlInd;
IRQ IREQRouting;
FLAGS8 IFType;
WORD IFIndex;

The GetSocket service returns the current configuration of the socket identified by the input
parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Socket I Specifies a physical socket on the adapter.

SCIntMask O Returns current setting of mask for events that generate a status change interrupt when
they occur on the socket. If a value is set the event generates a status change interrupt if
the following conditions are met: The event is supported as indicated by the SCIntCaps
parameter of InquireSocket and status change interrupts have been enabled by
SetAdapter.

This parameter is a combination of the SBM_x values defined in InquireSocket.

Vcontrol O This parameter takes on the following values:

Value Meaning

VCTL_CISREAD If reset, the VCC level and VPP[2::1] levels are controlled by the
VccLevel and VppLevels fields.

If set, the VCC level and VPP[2::1] levels are set to the value
indicated by the voltage sense signaling from the PC Card.

VCTL_OVERRIDE If reset, the VCC level matches the value indicated by the
voltage sense signaling from the PC Card.

If set, the VCC level does not match the value indicated by the
voltage sense signaling from the PC Card.

Note: The VCTL_CISREAD and VCTL_OVERRIDE bits are mutually exclusive. In
addition, Socket Services will reset these bits upon card removal.

The following values are mutually exclusive and are only valid when a PC Card is
inserted in the socket. They may be read before the socket is powered. They indicate the
voltage sense value the PC Card is signaling (VS[2::1] signals, see the Electrical
Specification) for reading the Card Information Structure (CIS):

VCTL_50V Use 5.0 V to read the CIS.

VCTL_33V Use 3.3 V to read the CIS.

VCTL_XXV Use X.X V to read the CIS.

Note: When initially powering a PC Card with SetSocket, if the VCTL_CISREAD
value is set, the PC Card is powered to the value indicated by the voltage
sense signaling from the card.

PROGRAM INTERFACE

36 ©2001 PCMCIA/JEITA

VccLevel O Returns current power level of VCC signal. This is an index into the array of PWRENTRY
items returned by InquireAdapter. Valid values range from zero to one less than the
number of levels returned by InquireAdapter.

VppLevels O Returns current power level of VPP[2::1] signals. This is two indices into the array of
PWRENTRY items returned by InquireAdapter. Separate values are returned in this
parameter for the VPP1 and VPP2 signals. Valid values range from zero to one less than
the number of levels returned by InquireAdapter.

Note: The VccLevel and VppLevels always return the actual levels currently applied
to the card.

State O Returns latched values representing state changes experienced by the socket hardware.
Only those values set in the InquireSocket SCRptCaps parameter will ever be set.
Once set, values must be explicitly reset using SetSocket.

This parameter is a combination of the SBM_x values defined in InquireSocket for the
SCIntCaps and SCRptCaps parameters.

CtlInd O Returns current setting of socket controls and indicators. If a value is set, the
corresponding control or indicator is on. If a value is reset, the corresponding control or
indicator is off. Values supported by the socket are defined by the CtlIndCaps parameter
returned by InquireSocket.

This parameter is a combination of the SBM_x values defined in InquireSocket for the
CtlIndCaps parameter.

IREQRouting O Returns PC Card IREQ# routing status. This parameter is an IRQ data type. It is a
combination of a binary value representing the IRQ level used for routing the PC Card
IREQ# signal and the following optional values:

Value Meaning

IRQ_HIGH If set, the PC Card IREQ# signal is inverted.

If reset, the PC Card IREQ# signal is routed without inversion.

IRQ_ENABLE If set, IREQ# routing is enabled.

If reset, IREQ# routing is not enabled and interrupts from a PC
Card in the socket are ignored.

IFType O Returns the current interface and DMA settings. Only one of the following interface
settings is valid at a time: IF_IO, IF_MEMORY, IF_CARDBUS, or IF_CUSTOM. The
DREQ and DMA Channel values are only valid if the interface is set to IF_IO and the
socket supports DMA as indicated by the IF_DMA value returned by InquireSocket.

Value Meaning

IF_MEMORY Socket interface is set to Memory-Only. (See the Electrical
Specification.)

IF_IO Socket interface is set to I/O and Memory interface. (See the
Electrical Specification.)

IF_CARDBUS Socket interface is set to CardBus PC Card mode, i.e. the card
inserted in the socket is a CardBus PC Card. (See the
Electrical Specification.)

IF_CUSTOM Socket interface is set to a custom interface. The index of the
current custom interface is returned in IFIndex. (See the
Electrical Specification and see also the Metaformat
Specification.)

DREQ Binary value describing the PC Card signal used for DREQ#. If
reset to zero, a DMA channel is not currently assigned to this
socket.

If set to one (1), DREQ# is assigned to the SPKR# pin.

If set to two (2), DREQ# is assigned to the IOIS16# pin.

If set to three (3), DREQ# is assigned to the INPACK# pin.

DMA Channel Binary value of the DMA channel currently assigned to this
socket. If DREQ is reset to zero, this value is undefined and
should be ignored.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 37

IFIndex O Returns the current Custom Interface setting when IFType is set to IF_CUSTOM. This is
an index into the array of dCustomIF items returned by InquireSocket. Valid values
range from zero to one less than the number of interface numbers returned by
InquireSocket.

Return Codes
SUCCESS if Adapter and Socket are valid

BAD_ADAPTER if Adapter is invalid

BAD_SOCKET if Socket is invalid

Comments
All parameters have been designed to map directly to the values required by the SetSocket service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
this service, make changes and then use SetSocket to modify the configuration without having to
create initial values for each parameter.

See Also InquireSocket, SetSocket

PROGRAM INTERFACE

38 ©2001 PCMCIA/JEITA

5.3.12 GetSSInfo [BOTH]
RETCODE = GetSSInfo (Adapter, Compliance, NumAdapters, FirstAdapter)

ADAPTER Adapter;
BCD Compliance;
COUNT NumAdapters;
ADAPTER FirstAdapter;

The GetSSInfo service returns the compliance level of the Socket Services interface supporting the
adapter specified by the input parameters and identifies the adapters serviced by the handler.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Each adapter may be handled by a different Socket Services handler. This argument
identifies a specific Socket Services handler. If a Socket Services handler supports more
than one adapter, the same information is returned for any adapter the handler supports.

Compliance O Returns the Socket Services Interface Specification compliance level as a Binary Coded
Decimal (BCD) value. If the handler is compliant with Release 12.98 of the PC Card
Socket Services specification, 1298H is returned.

Publication Compliance

PC Card Standard, Release 8.0 (April 2001) 0800H (8.00)

PC Card Standard, Release 7.2 (November 2000) 0720H (7.20)

PC Card Standard, Release 7.1 (March 2000) 0710H (7.10)

PC Card Standard, Release 7.0 (February 1999) 0700H (7.00)

PC Card Standard, Release 6.1 (April 1998) 0610H (6.10)

PC Card Standard, Release 6.0 (March 1997) 0600H (6.00)

PC Card Standard, Release 5.1 (November 1995) 0510H (5.10)

PC Card Standard, Release 5.0 (February 1995) 0500H (5.00)

PCMCIA 2.1 / JEIDA 4.2 0210H (2.10)

PCMCIA 2.0 / JEIDA 4.1 0200H (2.00)

PCMCIA 1.0 / JEIDA 4.0 0100H (1.00)

NumAdapters O Returns the number of adapters supported by this specific Socket Services handler.

FirstAdapter O Returns the first adapter number supported by this specific Socket Services handler. The
first Socket Services handler installed always returns zero (0) to indicate it supports the
first adapter in the system.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

Example
If a host system had five adapters, two Socket Services handlers and the first handler supported three
(3) adapters, this request returns with FirstAdapter equal to zero (0) and NumAdapters equal to three
(3), for Adapter values of zero, one or two (0, 1 or 2). If this request was made with Adapter set to three
or four (3 or 4), it would return with FirstAdapter set to three (3) and NumAdapters set to two (2).

See Also GetAdapterCount

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 39

5.3.13 GetStatus [BOTH]
RETCODE = GetStatus (Adapter, Socket, CardState, SocketState, CtlInd, IREQRouting, IFType)

ADAPTER Adapter;
SOCKET Socket;
FLAGS8 CardState;
FLAGS8 SocketState;
FLAGS8 CtlInd;
IRQ IREQRouting;
FLAGS8 IFType;

The GetStatus service returns the current status of the card, socket, controls and indicators for the
socket identified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Socket I Specifies a physical socket on the adapter.

CardState O Returns instantaneous state. This parameter represents the current state of the socket
and PC Card, if inserted. It is a combination of the SBM_x values defined in
InquireSocket for the SCIntCaps and SCRptCaps parameters.

SBM_LOCKED, SBM_EJECT and SBM_INSERT are vendor specific and may not be
supported. See InquireSocket SCRptCaps.

For 16-bit PC Cards, SBM_WP is the output of WP (pin 33). SBM_BVD1 is the output of
BVD1 (pin 63). SBM_BVD2 the output of BVD2 (pin 62). SBM_RDYBSY is the output of
READY (pin 16) and SBM_CD is the AND-ed value of the CD1# (pin 36) and CD2# (pin
67) outputs. Note that these bits are set when the defined states are true. This is the
inverted output of BVD1, BVD2 and the Card Detect signals.

If the interface is set to I/O and Memory mode, the meaning of many of these signals
change. Values reported are always based on the signal levels at the socket. If the
IFType is IF_IO, this service does NOT read status from the Pin Replacement Register.
This is the responsibility of the client.

For CardBus PC Cards, the state of the card is read from the Function Present State
register resident on the card. This register shows the current value for such states as
SBM_BVD1.

SocketState O Returns same latched information as State parameter of GetSocket.

This parameter is a combination of the SBM_x values defined in InquireSocket for the
SCIntCaps and SCRptCaps parameters.

CtlInd O Returns same information as CtlInd parameter of GetSocket, the current setting of
socket controls and indicators. If a value is set, the corresponding control or indicator is
on. If a value is reset, the corresponding control or indicator is off. Values supported by
the socket are defined by the CtlIndCaps parameter returned by InquireSocket.

This parameter is a combination of the SBM_x values defined in InquireSocket for the
CtlIndCaps parameter.

IREQRouting O Returns same information as IREQRouting parameter of GetSocket.

IFType O Returns the same information as IFType parameter of GetSocket.

Return Codes
SUCCESS if Adapter and Socket are valid

BAD_ADAPTER if Adapter is invalid

BAD_SOCKET if Socket is invalid

PROGRAM INTERFACE

40 ©2001 PCMCIA/JEITA

WARNING

This service must NOT be invoked during hardware interrupt processing. It is
intended to be used by a client during foreground and background processing,
but outside of the status change hardware interrupt handler.

See Also InquireSocket, GetSocket, SetSocket

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 41

5.3.14 GetVendorInfo[BOTH]
RETCODE = GetVendorInfo (Adapter, Type, pBuffer, Release)

ADAPTER Adapter;
BYTE Type;
PTR pBuffer;
BCD Release;

The GetVendorInfo service returns information about the vendor implementing Socket Services for
the adapter specified in the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Type I Specifies the type of vendor information to return in the client-supplied buffer. The only
Type currently defined is zero (0) which is an ASCIIZ string describing the implementer.

pBuffer I If Type is zero (0), this parameter points to a client-supplied buffer to be filled with an
ASCIIZ string describing the implementer. The buffer has the following form:

typedef struct tagVISTRUCT {
WORD wBufferLength = (BUF_SIZE - 4);
WORD wDataLength;
char szImplementor[BUF_SIZE - 4];

} VISTRUCT;
The wBufferLength field is set by the client to the length of the VISTRUCT structure
provided less the size of the first two fields (4 bytes). The wDataLength field is set by
Socket Services to the size of the information it has to return. Only the information that
fits in the buffer is copied. If the wDataLength is greater than wBufferLength, the
information is truncated.

Release O Vendor’s release number in BCD format. Each time a vendor releases a new version of
their Socket Services handler, they should change the value returned. The initial Release
should use the value 0100H to represent Release 1.00 of a vendor’s Socket Services
handler. A subsequent release of an updated version compliant with the same level of
the Socket Services Interface Specification should change this value according to the
vendor’s change control procedures.

The first release of an Socket Services handler compliant with a new specification should
again use 0100H to indicate this is the vendor’s first release compliant with the new
Socket Services specification. Each Socket Services released by a vendor must be
uniquely identified by the combination of the compliance level returned by the
Compliance parameter of GetSSInfo and this parameter.

Return Codes
SUCCESS if Adapter and Type are valid

BAD_ADAPTER if Adapter is invalid

BAD_SERVICE if Type is invalid

PROGRAM INTERFACE

42 ©2001 PCMCIA/JEITA

5.3.15 GetWindow [PC16]
RETCODE = GetWindow (Adapter, Window, Socket, Size, State, Speed, Base)

ADAPTER Adapter;
WINDOW Window;
SOCKET Socket;
SIZE Size;
FLAGS8 State;
SPEED Speed;
BASE Base;

The GetWindow service returns the current configuration of the window specified by the input
parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Window number. Specifies a physical window on the adapter.

Socket O Returns the physical socket the Window is currently assigned. Socket numbers range
from zero to fifteen using bits 0 to 3. The rest of the bits in this field are binding specific.

Size O Returns the window’s current size. If Size is equal to zero (0), the window is the
maximum size that may be represented by the data type used for this parameter plus
one. For example, if the data type used for Size is a word and it is expressed in units of a
byte, a value of zero represents a window size of 65,536 bytes.

State O Defined as below. Current state of the window hardware. This parameter can be a
combination of the following values:

Value Meaning

WS_IO If set, window maps registers on a 16-bit PC Card into the host
system's I/O address space.

If reset, window maps memory address space on a 16-bit PC
Card into the host system's memory address space.

WS_ENABLED If set, window is enabled and mapping a card’s address space
into the host system memory or I/O address space.

If reset, window is disabled.

WS_16BIT If set, window is programmed for a 16-bit data bus width.

If reset, window is programmed for an 8-bit data bus width.

WS_PAGED If set, window is subdivided into multiple 16 KByte pages
whose card offset addresses may be set individually using
SetPage.

If reset, window is a single page.

This value is only valid for memory windows (WS_IO reset).

WS_EISA If set, window is using EISA I/O mapping.

If reset, window is using ISA I/O mapping.

This value is only valid for I/O windows (WS_IO set).

WS_CENABLE If set, accesses to I/O ports in EISA common I/O areas
generate card enables.

If reset, accesses to I/O ports in EISA common I/O areas are
ignored.

This value is only valid for I/O windows (WS_IO set) that have
WS_EISA set.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 43

Speed O This parameter is the actual access speed being used by the window. It uses the format
of the Device Speed Code and Extended Device Speed Codes of the Device Information
Tuple. (See the Metaformat Specification.)

The Device Speed Code Values are used when what would be the mantissa of an
Extended Device Speed Code is reset to zero (0). If the mantissa is non-zero, supported
device speeds are coded according to the Extended Device Speed Code.

This parameter may not match the value specified by a successful SetWindow request.
If Socket Services does not support the speed requested, it uses the next slowest speed
it supports.

For Socket Services, Bit 7 of Speed is reserved and is reset to zero (0).

This parameter is not used and should be ignored for I/O windows (WS_IO set).

Base O Returns the current base address of the specified window. It is the first address within
the host system memory or I/O address space to which the window responds.

Return Codes
SUCCESS if Adapter and Window are valid

BAD_ADAPTER if Adapter is invalid

BAD_WINDOW if Window is invalid

Comments
All parameters have been designed to map directly to the values required for the SetWindow service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
this service, make changes and then use the SetWindow service to modify the configuration without
having to create initial values for each parameter.

For memory mapping windows, the area of the PC Card memory array mapped into the host system
memory space may be managed by GetPage and SetPage requests.

To map 16-bit PC Card memory into system memory requires that both the WS_ENABLED value of
the State field used by Get/SetWindow be set and the PS_ENABLED value of the State field used by
Get/SetPage be set. For windows with WS_PAGED reset, the PS_ENABLED value is ignored by
SetPage. The window is enabled and disabled by the WS_ENABLED value of SetWindow. GetPage
for windows with WS_PAGED reset reports the value of WS_ENABLED for PS_ENABLED.

For windows with WS_PAGED set, WS_ENABLED acts as a global enable/disable for all pages
within the window. Once WS_ENABLED has been set using SetWindow, individual pages may be
enabled and disabled using SetPage and PS_ENABLED.

If WC_WENABLE is reported as set by InquireWindow, Socket Services preserves the state of
PS_ENABLED for each page in the window whenever WS_ENABLED is changed by SetWindow. If
WC_ENABLE is reported as reset by InquireWindow, the client must use SetPage to set the
PS_ENABLED state for each page within the window after WS_ENABLED is set with SetWindow.

See Also InquireWindow, SetWindow, GetPage, SetPage, InquireBridgeWindow,
GetBridgeWindow, SetBridgeWindow

PROGRAM INTERFACE

44 ©2001 PCMCIA/JEITA

5.3.16 InquireAdapter [BOTH]
RETCODE = InquireAdapter (Adapter, pBuffer, NumSockets, NumWindows, NumEDCs,

NumBridgeWindows)
ADAPTER Adapter;
PTR pBuffer;
COUNT NumSockets;
COUNT NumWindows;
COUNT NumEDCs;
COUNT NumBridgeWindows;

The InquireAdapter service returns information about the capabilities of the adapter specified by the
input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

pBuffer I Points to a client-supplied buffer to be filled with information about the adapter. The
buffer has the following form:

typedef struct tagAISTRUCT {
WORD wBufferLength;
WORD wDataLength;
ACHARTBL CharTable;
WORD wNumPwrEntries = NUM_ENTRIES;
PWRENTRY PwrEntry[NUM_ENTRIES];

} AISTRUCT;
The wBufferLength field is set by the client to the size in bytes of AISTRUCT less the
size of the first two fields (4 bytes). The wDataLength field is set by Socket Services to
the size of the information it has to return. Only the information that fits in the buffer is
copied. If the wDataLength is greater than wBufferLength, the information is truncated.

The ACHARTBL structure is defined on page 46.

A PWRENTRY is a structure which has two members. One member is a binary value
representing a DC voltage level in tenth of a volt increments (25.5 V DC maximum). The
other member indicates which power signals may be set to the specified voltage level. It
may be set to a combination of the following: VCC, VPP1, and/or VPP2.

A PWRENTRY is a structure which has two members. One member is a binary value
representing a DC voltage level in tenth of a volt increments (25.5 V DC maximum). The
other member indicates which power signals may be set to the specified voltage level. It
may be set to a combination of the following: VCC, VPP1, and/or VPP2.

The PWRENTRY structure is defined on page 47.

NumSockets O Returns the number of sockets provided by the adapter.

NumWindows O Returns the number of 16-bit PC Card windows provided by the adapter.

NumEDCs O Returns the number of Error Detection Code (EDC) generators provided by the adapter.

NumBridgeWindows O Returns the number of bridge windows provided by the adapter.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

Comments
By convention, all sockets on an adapter use the same PWRENTRY array. There is one PWRENTRY
for each supported voltage.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 45

The PWRENTRY only indicates it is possible to set one or more of the power pins to that power level.
The PWRENTRY does not indicate acceptable power combinations for the power pins. The example
below indicates VCC, VPP1 and VPP2 can be set to No Connect and that VPP1 and VPP2 can be set to
12 V. This table does not define any relationships between VPP1, VPP2, and VCC; for example,
implementations may fail requests to set VCC to 0 V and either VPP1 or VPP2 to 12 V. . It is up to the
Socket Services client to determine if a particular combination of power levels is valid for the PC Card
in the socket.

Example
AISTRUCT AdapterInfo = {

18, //Size of client-supplied buffer is 18 bytes
18, //Size of data returned is 18 bytes
{0, //Indicators, power and data bus width

//controlled at the socket
0, //No cache support on adapter
0xDEB8, //Status changes may be routed to IRQ levels

// 3, 4, 5, 7, 9, 10, 11, 12, 14, and 15
// as an active high signal

0}, //Status changes are not available on any
// level as an active low signal

3, //Number of PWRENTRY elements
((VCC | VPP1 | VPP2) << 8) | 0, // Vcc, Vpp1 and Vpp2 - No connect
((VCC | VPP1 | VPP2) << 8) | 50, // Vcc, Vpp1 and Vpp2 - 5.0 VDC
((VPP1 | VPP2) << 8) | 120 // Vpp1 and Vpp2 - 12.0 VDC

};

See Also GetAdapter, SetAdapter

PROGRAM INTERFACE

46 ©2001 PCMCIA/JEITA

Adapter Characteristics Structure
typedef struct tagACHARTBL {

FLAGS8 AdpCaps;
BYTE CacheLineSize;
FLAGS32 ActiveHigh;
FLAGS32 ActiveLow;

} ACHARTBL;

Member Description

AdpCaps Flags indicating whether certain characteristics are controlled at an adapter level or at a socket
level. If set, the characteristic is controlled at the adapter level. This member can be a combination
of the following values:

Value Meaning

AC_IND Indicators - If AC_IND is set, indicators for write-protect, card lock, battery
status, busy status and XIP status are shared for all sockets on the
adapter.

If AC_IND is reset, there are individual indicators for each socket on the
adapter.

AC_PWR Power Level - If AC_PWR is set, even though the interface provides for
separate power level controls for each socket using the SetSocket
service, the adapter requires that all sockets be set to the same value.

Socket Services is responsible for resolving conflicts between settings for
individual sockets. When the AC_PWR flag is set, setting VPP[2::1] to 12
V results in 12 V being applied to all of the sockets on the adapter.
Socket Services does not remove 12 V from the VPP[2::1] lines until all
sockets set VPP[2::1] back to the VCC level.

If AC_PWR is reset, power levels may be individually set for each socket
on the adapter.

AC_DBW Data Bus Width - If AC_DBW is set, all windows on the adapter must use
the same data bus width.

If AC_DBW is reset, the data bus width is set individually for each window
on the adapter.

AC_CARDBUS CardBus PC Card capable. If set, all sockets are CardBus PC Card-
capable. If reset, then all sockets are not CardBus PC Card-capable.

CacheLineSize Host system cache line size in units of 32-bit words. CardBus PC Cards participating in caching
protocol need this information to know when to retry burst accesses at cache line boundaries. If
bridge windows on the adapter do not support caching or there are no bridge windows on the
adapter, this field is reset to zero. This field is also reset to zero if the adapter does not support
CardBus PC Cards.

ActiveHigh Bit-map of IRQ levels the Status Change interrupt may be routed with an active high state when an
unmasked event occurs.

ActiveLow Bit-map of IRQ levels the Status Change interrupt may be routed with an active low state when an
unmasked event occurs.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 47

Power Entry Structure
typedef struct tagPWRENTRY {

PWRINDEX PowerLevel;
FLAGS8 ValidSignals;

} PWRENTRY;

Member Description

PowerLevel DC voltage level in tenth of a volt increments. The power level ranges from zero (meaning No
Connect) to 25.5 V DC in tenth of a volt increments.

ValidSignals Flags indicating whether voltage is valid for specific signals. This member can be a combination of
the following values:

Value Meaning

VCC Voltage level is valid for VCC signal.

VPP1 Voltage level is valid for VPP1 signal.

VPP2 Voltage level is valid for VPP2 signal.

PROGRAM INTERFACE

48 ©2001 PCMCIA/JEITA

5.3.17 InquireBridgeWindow [BOTH]
RETCODE = InquireBridgeWindow (Adapter, Window, pBuffer, WndCaps, Sockets)

ADAPTER Adapter;
WINDOW Window;
PTR pBuffer;
FLAGS8 WndCaps;
SKTBITS Sockets;

The InquireBridgeWindow service returns information about the capabilities of the bridge window
specified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Specifies a bridge window on the adapter.

pBuffer I Points to a client-supplied buffer to be filled with information about the bridge window.
The buffer has the following form:

typedef struct tagBWISTRUCT {
WORD wBufferLength;
WORD wDataLength;
BWINTBL WinTable[NUM_TYPES];

} BWISTRUCT;
The wBufferLength field is set by the client to the size in bytes of BWISTRUCT less the
size of the first two fields (4 bytes). The wDataLength field is set by Socket Services to
the size of the information it has to return. Only the information that fits in the buffer is
copied. If the wDataLength is greater than wBufferLength, the information is truncated.

A bridge window may support either I/O or memory accesses. Each window type has
associated characteristics described in tables returned in the client-supplied buffer.

Bridge window characteristics vary if the hardware is used as a memory or as an I/O
window. For that reason, this service provides two tables of information. The
BMEMWINTBL structure is defined on page 50. The BIOWINTBL structure is defined on
page 52.

If a bridge window supports both memory and I/O access, both characteristics tables are
copied to the client-supplied buffer. When a bridge window supports both types of
access, the memory window characteristics table is first in the buffer, followed by the I/O
window characteristics table. If only one type of access is supported, only the
appropriate characteristics table is copied into the buffer by Socket Services.

WndCaps O This parameter indicates the capability of the specified window. It can be a combination
of the following values:

Value Meaning

WC_IO If set, bridge window may be used to route host system I/O
accesses to a PC Card socket.

WC_MEMORY If set, bridge window may be used to route host system
memory accesses to a PC Card socket.

Sockets O Depending on the hardware implementation, bridge windows may be dedicated to a
particular socket or may allow assignment to a given socket on an adapter.

If a bridge window may be assigned to a socket on the adapter, the corresponding bit in
this parameter is set. If a socket does not exist on an adapter its corresponding bit is
reset.

The first socket on the adapter is represented by the least significant bit of this
parameter.

Note: The size of this field constrains the number of sockets that may be supported
by an adapter.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 49

Return Codes:
SUCCESS if Adapter and Window are valid

BAD_ADAPTER if Adapter is invalid

BAD_WINDOW if Window is invalid

See Also GetBridgeWindow, SetBridgeWindow, InquireWindow, GetWindow, SetWindow,
AccessConfigSpace.

PROGRAM INTERFACE

50 ©2001 PCMCIA/JEITA

Bridge Memory Window Characteristics Table
typedef struct tagBMEMWINTBL {

FLAGS16 MemWndCaps;
BASE FirstByte;
BASE LastByte;
SIZE MinSize;
SIZE MaxSize;
SIZE ReqGran;
SIZE ReqBase;

} BMEMWINTBL;

Member Description

MemWndCaps Flags indicating memory bridge window characteristics. This member can be a combination of the
following values.

Value Meaning

WC_BASE If set, the base address of the bridge window is programmable within the
range specified by the FirstByte and LastByte members.

If reset, the base address of the bridge window is fixed in system memory
space at the address specified in the FirstByte member. When reset, the
LastByte member is undefined.

WC_SIZE If set, the bridge window size is programmable within the range specified
by the MinSize and MaxSize members.

If reset, the bridge window size is fixed to the size indicated by the
MinSize member. When reset, both the MinSize and MaxSize members
should be the same value.

WC_WENABLE If set, the window may be disabled and enabled without reprogramming
its characteristics.

If reset, the client must preserve window state information before
disabling the window.

WC_BALIGN If set, the bridge window base address must be programmed to align with
a multiple of the bridge window size. For example, a bridge window 16
MBytes in size needs to start on a 16 MByte boundary in the host system
memory address space.

If reset, the bridge window base address may be programmed anywhere
in the bridge window's valid range, subject to any constraint specified by
ReqBase.

WC_POW2 If set, a bridge window with WC_SIZE also set must be sized between the
MinSize and MaxSize members as a power of two of the ReqGran
member.

If reset, a bridge window with WC_SIZE set may be any multiple of the
ReqGran member between the MinSize and MaxSize members.

WC_FETCHABLE If set, this bridge window supports prefetching CardBus PC Card
memory.

If reset, this bridge window does not support prefetching CardBus PC
Card memory.

WC_CACHABLE If set, this bridge window supports caching CardBus PC Card memory.

If reset, this bridge windows does not support caching CardBus PC Card
memory.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 51

FirstByte First byte addressable in host system memory address space by bridge window. If bridge window
base is not programmable, this is the fixed base address of the bridge window.

LastByte Last byte addressable in host system memory address space by bridge window. The last byte of
the bridge window (base address programmed plus bridge window size minus one) may not
exceed this value.

If bridge window base is not programmable, this member is undefined.

MinSize The minimum bridge window size. When a bridge window size is programmed with
SetBridgeWindow it must lie in the range of the MinSize and MaxSize members and meet all
granularity and base requirements.

MaxSize The maximum bridge window size. When bridge window size is programmed with
SetBridgeWindow it must lie in the range of the MinSize and MaxSize members and meet all
granularity and base requirements.

The bridge window size may be further limited by the base address of the bridge window. The base
address plus the bridge window size minus one must not exceed the LastByte member for bridge
windows with programmable sizes.

If MaxSize is zero, bridge window size is the largest value that may be represented by the SIZE
data type plus one.

ReqGran This member describes the required units for expressing bridge window size due to hardware
constraints. If the bridge window size is fixed (WC_SIZE is reset), this member will be the same as
the MinSize and MaxSize members.

ReqBase If WC_BALIGN is reset, this member describes any alignment boundary requirement for
programming the bridge window's base address with SetBridgeWindow.

If WC_BALIGN is set, this field is undefined.

Comments
Memory bridge windows are used to route host system memory accesses to a PC Card. Not all
adapters have bridge windows. For those that do, both a bridge window and the hardware used to
map PC Card memory address space into the host system must be enabled at overlapping addresses.
For 16-bit PC Cards, a mapping window on the adapter and one or more pages within the window
must be enabled. For CardBus PC Cards, a Base Address Register on the card must be programmed.
A single bridge window assigned to a socket may be used with multiple mapping windows or Base
Address Registers.

For CardBus PC Cards, a given bridge window may be capable of both prefetchable and cacheable
memory accesses. However, only one of these capabilities may be enabled at a time. The
characteristics of the PC Card memory accessed by programming a Base Address Register on the card
must match the bridge window’s characteristics.

PROGRAM INTERFACE

52 ©2001 PCMCIA/JEITA

Bridge I/O Window Characteristics Table
typedef struct tagBIOWINTBL {

FLAGS16 IOWndCaps;
BASE FirstByte;
BASE LastByte;
SIZE MinSize;
SIZE MaxSize;
SIZE ReqGran;

} BIOWINTBL;

Member Description

IOWndCaps Flags indicating I/O bridge window characteristics. This member can be a combination of the
following values:

Value Meaning

WC_BASE If set, the base address of the bridge window is programmable within the
range specified by the FirstByte and LastByte members.

If reset, the base address of the bridge window is fixed in system I/O
address space at the address specified in the FirstByte member. When
WC_BASE is reset, the LastByte member is undefined.

WC_SIZE If set, the bridge window size is programmable within the range specified
by the MinSize and MaxSize members.

If reset, the bridge window size is fixed to the size indicated by the
MinSize member. When WC_SIZE is reset, both the MinSize and
MaxSize members shall be the same value.

WC_WENABLE If set, the bridge window may be disabled and enabled without
reprogramming its characteristics.

If reset, the client must preserve bridge window state information before
disabling the window.

WC_POW2 If set, a bridge window with WC_SIZE set must be sized between the
MinSize and MaxSize members as a power of two of the ReqGran
member.

If reset, a bridge window with WC_SIZE set may be any multiple of the
ReqGran member between the MinSize and MaxSize members.

FirstByte First byte addressable in host system I/O address space by the bridge window. If the bridge
window base is not programmable, this is the fixed base address of the bridge window.

LastByte Last byte addressable in host system I/O address space by the bridge window. The last byte of the
bridge window (base address programmed plus window size minus one) may not exceed this
value.

If the bridge window base is not programmable, this member is undefined.

If LastByte is expressed in units other than bytes, any address bits of lesser significance not
directly expressed are assumed to be set to one (1). For example, if LastByte is expressed in 4
KByte units, a value of A3H indicates the last addressable byte within the window is at location
A3FFFH in the host system’s I/O address space.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 53

MinSize The minimum bridge window size. When bridge window size is programmed with
SetBridgeWindow it must lie in the range of the MinSize and MaxSize members and meet all
granularity and base requirements.

MaxSize The maximum bridge window size. When bridge window size is programmed with
SetBridgeWindow it must lie in the range of the MinSize and MaxSize members and meet all
granularity and base requirements.

The bridge window size may be further limited by the base address of the bridge window. The base
address plus the bridge window size minus one must not exceed the LastByte member for bridge
windows with programmable sizes.

If MaxSize is zero, bridge window size is the largest value that may be represented by the SIZE
data type plus one.

ReqGran This member describes the required units for expressing bridge window size due to hardware
constraints. If the bridge window size is fixed (WC_SIZE is reset), this member will be the same as
the MinSize and MaxSize members.

I/O bridge windows are used to provide access to the host system I/O address space for PC Card
windows. Not all adapters have bridge windows. For those that do, both a bridge window and the
hardware used to map PC Card I/O address space into the host system must be enabled at
overlapping addresses.

PROGRAM INTERFACE

54 ©2001 PCMCIA/JEITA

5.3.18 InquireEDC [BOTH]
RETCODE = InquireEDC (Adapter, EDC, Sockets, Caps, Types)

ADAPTER Adapter;
EDC EDC;
SKTBITS Sockets;
FLAGS8 Caps;
FLAGS8 Types;

The InquireEDC service returns the capabilities of the EDC generator specified by the input
parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Sockets O A bit-map of the sockets the EDC generator may be assigned.

Caps O Returns the capabilities of the EDC generator. This field may be combination of the
following values:

Value Meaning

EC_UNI If set, EDC generator supports unidirectional code generation.

If reset, EDC generator does not support unidirectional code
generation.

EC_BI If set, EDC generator supports bi-directional code generation.

If reset, EDC generator does not support bi-directional code
generation.

EC_REGISTER If set, EDC generation is supported through register-based
access.

If reset, EDC generation is not supported through register-
based access.

EC_MEMORY If set, EDC generation is supported during window access.

If reset, EDC generation is not supported during window
access.

EC_PAUSABLE If set, EDC generation can be paused.

If reset, EDC generation cannot be paused.

This value is set if the EDC generator may be paused during
computation. This allows algorithms which require multiple
accesses to a single location on a card from computing an
erroneous EDC value.

If this value is not set, the PauseEDC and ResumeEDC
services are not available.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 55

Types O Returns types of EDC generation supported. This parameter may be a combination of
the following values:

Value Meaning

ET_CHECK8 If set, EDC generator supports 8-bit checksum code
generation.

If reset, EDC generator does not support 8-bit checksum code
generation.

ET_SDLC16 If set, EDC generator supports 16-bit CRC-SDLC code
generation.

If reset, EDC generator does not support 16-bit CRC-SDLC
code generation.

ET_SDLC32 If set, EDC generator supports 32-bit CRC-SDLC code
generation.

If reset, EDC generator does not support 32-bit CRC-SDLC
code generation.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

Comments
A hardware implementation may or may not provide EDC generation. This service describes the
capability of a particular EDC generator. EDC generators may be shared between sockets. Higher-
level software must arbitrate the use of EDC generators.

If EDC generation is available, InquireAdapter returns the number of EDC generators available for
all the sockets supported by the adapter. The capabilities of each generator can be enumerated by
calling this service for each generator.

Socket Services supports two types of EDC generation: checksums for 8-bit transfers and CRC-SDLC
calculations for 16-bit and 32-bit transfers. EDC generation may be produced by read or write
accesses. Special programming algorithms which require a combination of reads and writes must be
aware of how EDC generation is performed to avoid erroneous computations. Bi-directional EDC
generation may not be usable with Flash programming algorithms since these algorithms typically
require a combination of reads and writes.

EDC generation may not be available with memory-mapped implementations. EDC generators must
be configured before use with the SetEDC service.

See Also GetEDC, SetEDC, StartEDC, PauseEDC, ResumeEDC, StopEDC, ReadEDC

PROGRAM INTERFACE

56 ©2001 PCMCIA/JEITA

5.3.19 InquireSocket [BOTH]
RETCODE = InquireSocket (Adapter, Socket, pBuffer, SCIntCaps, SCRptCaps, CtlIndCaps)

ADAPTER Adapter;
SOCKET Socket;
PTR pBuffer;
FLAGS8 SCIntCaps;
FLAGS8 SCRptCaps;
FLAGS8 CtlIndCaps;

The InquireSocket service returns information about the capabilities of the socket specified by the
input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Socket I Specifies a physical socket on the adapter.

pBuffer I Points to a client-supplied buffer to be filled with information about the socket. The buffer
has the following form:

typedef struct tagSISTRUCT {
WORD wBufferLength;
WORD wDataLength;
SCHARTBL CharTable;

} SISTRUCT;
The wBufferLength field is set by the client to the size in bytes of SISTRUCT less the
size of the first two fields (4 bytes). The wDataLength field is set by Socket Services to
the size of the information it has to return. Only the information that fits in the buffer is
copied. If the wDataLength is greater than wBufferLength, the information is truncated.

The SCHARTBL structure is defined below.

SCIntCaps O Returns a bit-map of events which can trigger a Status Change interrupt. If an event can
trigger a status change interrupt, its value in this parameter is set. In order for the event
to trigger a status change event on a socket, the corresponding value in the SCIntMask
parameter of SetSocket must be set and status change interrupts must be enabled.

For 16-bit PC Cards the following values are implemented as signals.

For CardBus PC Cards several values are read from the Function Present State register
on the card, rather than being implemented as individual signals.

This parameter is a combination of the values described below:

Value Meaning

SBM_WP PC Card WP (write-protect).

SBM_LOCKED Externally generated indicating the state of a mechanical or
electrical card lock mechanism.

Not the same as SBM_LOCK which is used to control a card
lock.

SBM_EJECT Externally generated indicating a request to eject a PC Card
from the socket has been made.

SBM_INSERT Externally generated indicating a request to insert a PC Card
into the socket has been made.

SBM_BVD1 PC Card BVD1. When set, this indicates the battery is no
longer serviceable.

SBM_BVD2 PC Card BVD2. When set, this indicates the battery is weak.

SBM_RDYBSY PC Card READY.

SBM_CD CD1# and CD2# (16-bit PC Card)

or CCD1# and CCD2# (CardBus PC Card).

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 57

SCRptCaps O Returns Status Change events that the socket is capable of reporting. This parameter is
not the same as SCIntCaps. Some events may be reportable by GetStatus, but not able
to generate a status change interrupt as indicated by SCIntCaps.

If an event is not reportable by GetStatus, its value in this parameter is reset. In this
case, corresponding values in the GetStatus CardStatus parameter are undefined.

This parameter is a combination of the SBM_x values described under the SCIntCaps
parameter.

CtlIndCaps O Returns control and indicator capabilities of the socket. If a value is set, the control or
indicator is supported. If a value is reset, the control or indicator is not supported. This
parameter may be a combination of the following values:

Value Meaning

SBM_WP Indicator for PC Card WP (write-protect) state.

SBM_LOCKED Indicator for externally generated event indicating the state of a
mechanical or electrical card lock mechanism

SBM_EJECT Control for motor to eject a PC Card from the socket.

SBM_INSERT Control for motor to insert a PC Card into the socket.

SBM_LOCK Control for card lock.

Not the same as SBM_LOCKED which reflects the state of an
externally generated card lock event.

SBM_BATT Indicator for BVD1 and BVD2 state.

SBM_BUSY Indicator for showing card is in-use.

SBM_XIP Indicator for eXecute-In-Place application in progress.

Return Codes
SUCCESS if Adapter and Socket are valid

BAD_ADAPTER if Adapter is invalid

BAD_SOCKET if Socket is invalid

Example
SISTRUCT SocketInfo = {

20, // Size of client-supplied buffer is 20 bytes
20, // Size of data returned is 20 bytes
{IF_MEMORY | IF_IO, // Socket supports Memory-Only and

// I/O and Memory interfaces
0xDEB8, // PC Card IREQ# signal may be routed to IRQ levels

// 3, 4, 5, 7, 9, 10, 11, 12, 14, and 15
// as an active high signal

0, // PC Card IREQ# routing not available on any
// level as an active low signal

2, // Number of custom interfaces supported
0x0141, // Custom Interface Number dCustomIF[0], index 0
0x0241}, // Custom Interface Number dCustomIF[1], index 1

};

See Also GetSocket, SetSocket

PROGRAM INTERFACE

58 ©2001 PCMCIA/JEITA

Socket Characteristics Structure
typedef struct tagSCHARTBL {

FLAGS16 SktCaps;
FLAGS32 ActiveHigh;
FLAGS32 ActiveLow;
FLAGS16 DMAChannels;
WORD wNumCustomIF = NUM_ENTRIES;
DWORD dCustomIF[NUM_ENTRIES];

} SCHARTBL;

Member Description

SktCaps Flags indicating socket characteristics. If set, the characteristic is supported. This member can be
a combination of the following values:

Value Meaning

IF_MEMORY Socket supports Memory-Only interface. (See the Electrical
Specification.)

IF_IO Socket supports I/O and Memory interface. (See the Electrical
Specification.)

IF_CB Socket supports CardBus PC Card interface. (See the Electrical
Specification.)

IF_33VCC Socket supports 3.3 V Interface.

IF_XXVCC Socket supports X.X V Interface.

IF_VSKEY Socket supports Low Voltage Key.

IF_DMA Socket supports 16-bit PC Card DMA transfers. (See the Electrical
Specification and the Card Services Specification.)

ActiveHigh Bit-map of IRQ levels available for routing an inverted PC Card IREQ# signal when an unmasked
event occurs.

ActiveLow Bit-map of IRQ levels available for routing the normal PC Card IREQ# signal when an unmasked
event occurs.

It is assumed that PC Card IREQ# signals may be shared in a host system.

DMAChannels Bit-map of DMA channels supported by this socket. Bit 0 through 15 correspond to DMA channel 0
through 15. If a bit is set to one, the corresponding DMA channel is supported by the socket. The
DMA width supported by any DMA channel Is host system specific and beyond the scope of
Socket Services.

If a socket does not support DMA operations, this field may be omitted.

wNumCustomIF The number of custom interfaces supported by this socket. If this number is non-zero the socket
supports custom interfaces in addition to the interfaces indicated in the SktCaps field.

dCustomIF Array of custom interface ID numbers supported by this socket. (See the Electrical Specification
and see also the Metaformat Specification.)

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 59

5.3.20 InquireWindow [PC16]
RETCODE = InquireWindow (Adapter, Window, pBuffer, WndCaps, Sockets)

ADAPTER Adapter;
WINDOW Window;
PTR pBuffer;
FLAGS8 WndCaps;
SKTBITS Sockets;

The InquireWindow service returns information about the capabilities of the window specified by
the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Window number. Specifies a physical window on the adapter

pBuffer I Points to a client-supplied buffer to be filled with information about the window. The
buffer has the following form:

typedef struct tagWISTRUCT {
WORD wBufferLength;
WORD wDataLength;
WINTBL WinTable[NUM_TYPES];

} WISTRUCT;
The wBufferLength field is set by the client to the size in bytes of WISTRUCT less the
size of the first two fields (4 bytes). The wDataLength field is set by Socket Services to
the size of the information it has to return. Only the information that fits in the buffer is
copied. If the wDataLength is greater than wBufferLength, the information is truncated.

A window may support two types of mapping: memory or I/O. Each window type has
associated characteristics described in tables returned in the client-supplied buffer.

Window characteristics vary if the hardware is used as a memory or as an I/O window.
For that reason, this service may provide multiple tables of information. The
MEMWINTBL structure is defined on page 61. The IOWINTBL structure is defined on
page 65.

If a window supports both memory and I/O mapping, both characteristics tables are
copied to the client-supplied buffer. When a window supports both types of mapping, the
memory window characteristics table is first in the buffer, followed by the I/O window
characteristics table. If only one type of mapping is supported, only the appropriate
characteristics table is copied into the buffer by Socket Services.

EISA I/O and Memory windows may be selected, but the supported I/O map is not
programmable. Card enables are asserted based on the pre-defined address line
settings returned in the I/O window characteristics structure member EISASlot.

WndCaps O This parameter indicates the capability of the specified window. It can be a combination
of the following values:

Value Meaning

WC_COMMON If set, window may be used to map the common memory plane
of a 16-bit PC Card into the host system memory address
space.

WC_ATTRIBUTE If set, window may be used to map the attribute memory plane
of a 16-bit PC Card into the host system memory address
space.

WC_IO If set, window may be used to map I/O ports on a 16-bit PC
Card into the host system I/O address space.

WC_WAIT If set, window supports the use of the WAIT# signal from a 16-
bit PC Card to generate additional wait states.

PROGRAM INTERFACE

60 ©2001 PCMCIA/JEITA

Sockets O Depending on the hardware implementation, windows may be dedicated to a particular
socket or may allow assignment to one or more sockets on an adapter.

If a window may be assigned to a socket, the corresponding bit in this parameter is set. If
a socket does not exist on an adapter its corresponding bit is reset.

The first socket on the adapter is represented by the least significant bit of this
parameter.

Note: The size of this field constrains the number of sockets that may be supported
by an adapter.

Return Codes
SUCCESS if Adapter and Window are valid

BAD_ADAPTER if Adapter is invalid

BAD_WINDOW if Window is invalid

See Also GetWindow, SetWindow, InquireBridgeWindow, GetBridgeWindow, SetBridgeWindow

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 61

Memory Window Characteristics Table
typedef struct tagMEMWINTBL {

FLAGS16 MemWndCaps;
BASE FirstByte;
BASE LastByte;
SIZE MinSize;
SIZE MaxSize;
SIZE ReqGran;
SIZE ReqBase;
SIZE ReqOffset;
SPEED Slowest;
SPEED Fastest;

} MEMWINTBL;

Member Description

MemWndCaps Flags indicating memory window characteristics. This member can be a combination of the
following values:

Value Meaning

WC_BASE If set, the base address of the window is programmable within the range
specified by the FirstByte and LastByte members.

If reset, the base address of the window is fixed in system memory
address space at the address specified in the FirstByte member. When
reset, the LastByte member is undefined.

WC_SIZE If set, the window size is programmable within the range specified by the
MinSize and MaxSize members.

If reset, the window size is fixed to the size indicated by the MinSize
member. When reset, both the MinSize and MaxSize members should be
the same value.

WC_WENABLE If set, the window may be disabled and enabled without reprogramming
its characteristics.

If reset, the client must preserve window state information before
disabling the window.

WC_8BIT If set, the window may be programmed for 8-bit data bus width.

If reset, the window may not be used for 8-bit data transfers.

WC_16BIT If set, the window may be programmed for 16-bit data bus width.

If reset, the window may not be used for 16-bit data transfers.

WC_BALIGN If set, the window base address must be programmed to align with a
multiple of the window size. For example, a window 16 KBytes in size
needs to start on a 16 KByte boundary in the host system memory
address space.

If reset, the window base address may be programmed anywhere in the
window’s valid range, subject to any constraint specified by ReqBase.

WC_POW2 If set, a window with WC_SIZE also set must be sized between the
MinSize and MaxSize members as a power of two of the ReqGran
member.

If reset, a window with WC_SIZE set may be any multiple of the ReqGran
member between the MinSize and MaxSize members.

For example, if ReqGran is 4 KBytes, MinSize is 4 KBytes, MaxSize is 64
KBytes and WC_POW2 is set, the possible window sizes are 4, 8, 16, 32
and 64 KBytes.

If WC_POW2 is reset, possible windows sizes include all sixteen
multiples of 4 KBytes between 4 and 64 KBytes.

PROGRAM INTERFACE

62 ©2001 PCMCIA/JEITA

WC_CALIGN If set, 16-bit PC Card offsets are required to be specified to SetPage in
increments of the size of the window.

If reset, 16-bit PC Card offsets may be specified to SetPage without
relation to the size of the window.

For example, if WC_CALIGN is set and the window is 16 KBytes in size,
all 16-bit PC Card offsets specified to SetPage must be on 16 KByte
boundaries.

WC_PAVAIL If set, the window has hardware available which is capable of dividing the
window into multiple pages.

If reset, the entire window must be addressed as a single page.

WC_PSHARED If set, a window’s paging hardware is shared with another window. A
request to use the paging hardware may fail if the other window is using
the paging hardware.

If reset, the window’s paging hardware is dedicated and a request to use
the paging hardware should never fail.

This value is only valid if WC_PAVAIL is set.

A Socket Services client should check WC_PSHARED if intending to use
paging services. If set, the client must ensure that a subsequent
SetWindow request requiring paging hardware succeeds before
attempting to utilize the window as the paging hardware may have
already been assigned to another window.

To determine if the pager is available, attempt to assign it to a window
using SetWindow and check for successful return status from the
request.

WC_PENABLE If set, the page may be disabled and enabled without reprogramming its
characteristics.

If reset, the client must preserve page state information before disabling
the page.

WC_WP If set, the window may be write-protected to prevent writing 16-bit PC
Card memory mapped into host system memory address space.

If reset, the window may not be write-protected to prevent writing 16-bit
PC Card memory mapped into host system memory address space.

Write-protection is enabled and disabled with the SetPage service which
requires this support to be available on a page basis for windows which
have multiple pages.

FirstByte First byte addressable in host system memory address space by window. If window Base is not
programmable, this is the fixed base address of the window.

LastByte Last byte addressable in host system memory address space by window. The last byte of the
window (base address programmed plus window size minus one) may not exceed this value.

If window Base is not programmable, this member is undefined.

If LastByte is expressed in units other than bytes, any address bits of lesser significance not
directly expressed are assumed to be set to one (1). For example, if LastByte is expressed in 4
KByte units, a value of A3H indicates the last addressable byte within the window is at location
A3FFFH in the host system’s memory address space.

MinSize The minimum window size. When window size is programmed with SetWindow it must lie in the
range of the MinSize and MaxSize members and meet all granularity and base requirements.

MaxSize The maximum window size. When window size is programmed with SetWindow it must lie in the
range of the MinSize and MaxSize members and meet all granularity and base requirements.

The window size may be further limited by the base address of the window. The base address plus
the window size minus one must not exceed the LastByte member for windows with programmable
sizes.

If MaxSize is zero, window size is the largest value that may be represented by the SIZE data type
plus one.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 63

ReqGran This member describes the required units for expressing window size due to hardware constraints.
If the window size is fixed (WC_SIZE is reset), this member will be the same as the MinSize and
MaxSize members.

ReqBase If WC_BALIGN is reset, this member describes any alignment boundary requirement for
programming the window’s base address with SetWindow.

If WC_BALIGN is set, this field is undefined.

ReqOffset If WC_CALIGN is reset, this member describes any alignment boundary requirement for
programming the PC Card offset address with SetPage.

If WC_CALIGN is set, this field is undefined.

Slowest This member represents the slowest access speed supported by the window.

Fastest This member represents the fastest access speed supported by the window.

Comments
The Slowest and Fastest members use the format of the Device Speed Code and Extended Device
Speed Codes of the Device Information Tuple. (See the Metaformat Specification.) For Socket
Services, Bit 7 of the Slowest and Fastest members is reserved and is reset to zero (0).

The Device Speed Code values are used when what would be the mantissa of an Extended Device
Speed Code is reset to zero (0). If the mantissa is non-zero, supported device speeds are coded
according to the Extended Device Speed Code. (See the Metaformat Specification.)

Memory windows map accesses to host system memory address space into accesses to memory
address space located on a PC Card. How the socket hardware performs this mapping determines the
memory characteristics table definition. While memory windows are described by a number of
characteristics, most window mapping hardware falls into one of two categories with each category
having a single set of characteristics.

Direct window mapping hardware selects a fixed combination of high order address lines (typically
via mask and match registers) on the PC Card whenever an access is made within the host system
memory address range assigned to the window. Low order address lines are routed directly to the PC
Card.

The window size determines how many low order address lines are routed directly to the PC Card.
The fixed combination used for the high order address lines is set by the SetPage service. This type of
window mapping hardware requires the window size be a power of two and that the base address be
aligned on a multiple of the window size since mapping is related to the number of low order address
lines routed directly to the PC Card.

Translating window mapping hardware uses additional logic to compute a PC Card address. When
an access is made to a location within the host system address range mapped by the window, the
hardware computes the offset of this location from the beginning of the mapped range (typically via
base and length registers) and adds it to the starting offset on the PC Card as set by the SetPage
service.

While high order address lines may still be set to a fixed combination and some number of low order
address lines may be directly routed to the PC Card, mid-order address lines are computed by the
window mapping hardware. This type of hardware does not require the window be sized as a power
of two or aligned on a boundary related to the window size. However, the window size must be a
multiple of the ReqGran field.

In summary, if direct window mapping hardware is used, the WC_BALIGN, WC_POW2 and
WC_CALIGN parameters are set and the ReqBase and ReqOffset members are not used. If translating
window hardware is used, the WC_BALIGN, WC_POW2 and WC_CALIGN parameters are reset and
the ReqBase and ReqOffset members are significant.

PROGRAM INTERFACE

64 ©2001 PCMCIA/JEITA

The ReqBase, ReqOffset and ReqGran members are related to the number of low order address lines
which are routed directly to the PC Card. For example, if the twelve (12) least significant address lines
are routed directly to the PC Card, the ReqGran member will indicate the window must be sized as a
multiple of 4 KBytes. If translating window hardware is used, the ReqBase and ReqOffset will also
indicate the requirement to align the window base address and the PC Card offset on a 4 KByte
boundary.

The following table illustrates the relationship of Memory Window Characteristics Table members
to the type of hardware used to implement the window:

Member/Parameter Direct Translating

WC_BALIGN Set reset

WC_POW2 Set reset

WC_CALIGN Set reset

ReqGran Significant Significant

ReqBase Not Used Significant

ReqOffset Not Used Significant

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 65

I/O Window Characteristics Table
typedef struct tagIOWINTBL {

FLAGS16 IOWndCaps;
BASE FirstByte;
BASE LastByte;
SIZE MinSize;
SIZE MaxSize;
SIZE ReqGran;
COUNT AddrLines;
FLAGS8 EISASlot;

} IOWINTBL;

Member Description

IOWndCaps Flags indicating I/O window characteristics. This member can be a combination of the following
values:

Value Meaning

WC_BASE If set, the base address of the window is programmable within the range
specified by the FirstByte and LastByte members.

If reset, the base address of the window is fixed in host system I/O
address space at the address specified in the FirstByte member. When
WC_BASE is reset, the LastByte member is undefined.

WC_SIZE If set, the window size is programmable within the range specified by the
MinSize and MaxSize members.

If reset, the window size is fixed to the size indicated by the MinSize
member. When WC_SIZE is reset, both the MinSize and MaxSize
members should be the same value.

WC_WENABLE If set, the window may be disabled and enabled without reprogramming
its characteristics.

If reset, the client must preserve window state information before
disabling the window.

WC_8BIT If set, the window may be programmed for 8-bit data bus width.

If reset, the window may not be used for 8-bit data transfers.

WC_16BIT If set, the window may be programmed for 16-bit data bus width.

If reset, the window may not be used for 16-bit data transfers.

WC_BALIGN If set, the window base address must be programmed to align with a
multiple of the window size. For example, an 8 byte window needs to start
on an 8 byte boundary in the host system I/O address space.

If reset, the window base address may be programmed anywhere in the
window’s valid range, subject to any constraint specified by ReqBase.

WC_POW2 If set, a window with WC_SIZE set must be sized between the MinSize
and MaxSize members as a power of two of the ReqGran member.

If reset, a window with WC_SIZE set may be any multiple of the ReqGran
member between the MinSize and MaxSize members.

For example, if ReqGran is 4 bytes, MinSize is 4 bytes, MaxSize is 64
bytes and WC_POW2 is set, the possible window sizes are 4, 8, 16, 32
and 64 bytes.

If WC_POW2 is reset, possible windows sizes include all sixteen
multiples of 4 bytes between 4 and 64 bytes.

PROGRAM INTERFACE

66 ©2001 PCMCIA/JEITA

WC_INPACK If set, the window supports the INPACK# signal from a PC Card. This
signal allows I/O windows to overlap in the host system’s I/O address
space.

If reset, the INPACK# signal from a PC Card is ignored by the window
hardware. In this case, I/O windows may not overlap in the host system’s
I/O address space.

WC_EISA If set, the window supports I/O mapping in a the same manner as host
systems with EISA buses. The EISASlot member describes the slot-
specific address decodes for this window.

If reset, the window does not support EISA-like I/O mapping.

WC_CENABLE If set, EISA-like common address space enables may be programmed to
be ignored.

If reset, if the window is programmed for EISA-like I/O mapping, the PC
Card will receive a card enable signal whenever an access is made to an
EISA common address.

This value is only valid if WC_EISA is set.

FirstByte First byte addressable in host system I/O address space by window. If window base is not
programmable, this is the fixed base address of the window.

LastByte Last byte addressable in host system I/O address space by window. The last byte of the window
(base address programmed plus window size minus one) may not exceed this value.

If window base is not programmable, this member is undefined.

If LastByte is expressed in units other than bytes, any address bits of lesser significance not
directly expressed are assumed to be set to one (1). For example, if LastByte is expressed in 4
KByte units, a value of A3H indicates the last addressable byte within the window is at location
A3FFFH in the host system’s I/O address space.

MinSize The minimum window size. When window size is programmed with SetWindow it must lie in the
range of the MinSize and MaxSize members and meet all granularity and base requirements.

MaxSize The maximum window size. When window size is programmed with SetWindow it must lie in the
range of the MinSize and MaxSize members and meet all granularity and base requirements.

The window size may be further limited by the base address of the window. The base address plus
the window size minus one must not exceed the LastByte member for windows with programmable
sizes.

If MaxSize is zero, window size is the largest value that may be represented by the SIZE data type
plus one.

ReqGran This member describes the required units for expressing window size due to hardware constraints.
If the window size is fixed (WC_SIZE is reset), this member will be the same as the MinSize and
MaxSize members.

AddrLines Number of address lines decoded by window. Typically ten (10) or sixteen (16). If a window only
decodes ten address lines, accesses to locations above 1 KByte will drive card enables to a PC
Card when the ten least significant address lines fall within the range defined by the base address
and window size.

EISASlot Upper byte used for window-specific EISA I/O address decoding. Describes the upper four address
lines used to determine EISA slot-specific addresses used to drive card enables.

This member is undefined if WC_EISA is reset.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 67

5.3.21 PauseEDC [BOTH]
RETCODE = PauseEDC (Adapter, EDC)

ADAPTER Adapter;
EDC EDC;

The PauseEDC service pauses EDC generation on a configured and computing EDC generator
specified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

Comments
This service is used to pause EDC generation so some accesses to a PC Card are not involved in the
computation of an EDC value. This service is only supported if EC_PAUSABLE is set in the
InquireEDC Caps parameter.

See Also InquireEDC, GetEDC, SetEDC, StartEDC, ResumeEDC, StopEDC, ReadEDC

PROGRAM INTERFACE

68 ©2001 PCMCIA/JEITA

5.3.22 ReadEDC [BOTH]
RETCODE = ReadEDC (Adapter, EDC, Value)

ADAPTER Adapter;
EDC EDC;
DWORD Value;

The ReadEDC service reads the EDC value computed by the EDC generator specified by the input
parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Value O Returns computed EDC value. If the generator was set to ET_CHECK8, only the low
byte is significant. If the generator was set to ET_SDLC16, only the low word is
significant. If the generator was set to ET_SDLC32, all 32-bits are significant.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

Comments
If the generator has been used inappropriately (generator not assigned a socket or a combination of
reads and writes were used), the computed Value may be erroneous.

See Also InquireEDC, GetEDC, SetEDC, StartEDC, PauseEDC, ResumeEDC, StopEDC

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 69

5.3.23 ResetSocket [BOTH]
RETCODE = ResetSocket (Adapter, Socket)

ADAPTER Adapter;
SOCKET Socket;

The ResetSocket service resets the PC Card in the socket and returns socket hardware to its power-on
default state.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Socket I Specifies a physical socket on the adapter.

Return Codes
SUCCESS if Adapter and Socket are valid and there is a PC Card in the socket

BAD_ADAPTER if Adapter is invalid

BAD_SOCKET if Socket is invalid

NO_CARD if there is no PC Card in the socket

Comments
This service toggles the RESET pin of the card in the specified socket on the specified adapter.

This service completes an entire RESET pulse, toggling the pin to the RESET state and back to the
normal state. It ensures the minimum RESET pulse width is observed. It does NOT wait after
returning the RESET pin to its normal state. The client must ensure that a card is not accessed before
it is READY after this service has returned.

All socket hardware is returned to its default power-on state:

• IFType set to IF_MEMORY if a 16-bit PC Card is in the socket or to IF_CARDBUS if a CardBus PC
Card is in the socket.

• IREQRouting disabled.

• VCC, VPP1 and VPP2 set to 5 V DC for a 5 volt only system, otherwise set to the voltage specified
by the VS1# and VS2# pins.

• All windows, pages and EDC generators disabled.

PROGRAM INTERFACE

70 ©2001 PCMCIA/JEITA

5.3.24 ResumeEDC [BOTH]
RETCODE = ResumeEDC (Adapter, EDC)

ADAPTER Adapter;
EDC EDC;

The ResumeEDC service resumes EDC generation on a configured and paused EDC generator
specified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

Comments
This service is used to resume EDC generation so accesses to a PC Card are involved in the
computation of an EDC value. This service is only supported if EC_PAUSABLE is set in the
InquireEDC Caps parameter.

See Also InquireEDC, GetEDC, SetEDC, StartEDC, PauseEDC, StopEDC, ReadEDC

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 71

5.3.25 SetAdapter [BOTH]
RETCODE = SetAdapter (Adapter, State, SCRouting)

ADAPTER Adapter;
FLAGS8 State;
IRQ SCRouting;

The SetAdapter service sets the configuration of the specified adapter.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

State I Requested state of the adapter hardware. This parameter can be a combination of the
following values:

Value Meaning

AS_POWERDOWN If set, adapter hardware should attempt to conserve power.
Before an adapter conserving power may be used, full power
must be restored using this service.

If reset, adapter hardware should enter the fully-powered, fully
functional state.

AS_MAINTAIN If set, all adapter and socket configuration information is
maintained while power consumption is reduced.

If reset, adapter and socket configuration information must be
maintained by the client.

This value is only valid if the AS_POWERDOWN value is set.

SCRouting I Sets status change interrupt routing. The routing level and active-state are validated
even if routing is being disabled.

This parameter is an IRQ data type. It is a combination of a binary value representing the
interrupt level the status change interrupt is currently routed to and the following optional
bit-masks:

Value Meaning

IRQ_HIGH If set, status change interrupt is set to be active-high.

If reset, status change interrupt is set to active-low.

On adapters that do not have programmable status change
level logic, the desired interrupt level must match the actual
hardware or the request is failed returning BAD_IRQ.

IRQ_ENABLE If set, status change interrupt is enabled. If an unmasked status
change event occurs, the adapter generates a hardware
interrupt of the specified level.

If reset, status change interrupts are not generated by the
adapter.

Return Codes
SUCCESS if Adapter is valid

BAD_ADAPTER if Adapter is invalid

BAD_IRQ if StatusChange specifies an unsupported State or IRQ level

Comments
Preserving state information may not allow the same level of power reduction as not preserving state
information. The ability to reduce power consumption is vendor specific and reduced power settings
may not result in any power savings. For example, if an adapter supports a reduced power
consumption mode, but is unable to preserve state information in that mode, requests for reduced

PROGRAM INTERFACE

72 ©2001 PCMCIA/JEITA

power consumption and state preservation may be ignored and SUCCESS returned. The actual
adapter configuration is returned by the GetAdapter request.

All parameters have been designed to map directly to the values returned by the GetAdapter service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
GetAdapter, make changes and then use this service to modify the configuration without having to
create initial values for each parameter.

See Also InquireAdapter, GetAdapter

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 73

5.3.26 SetBridgeWindow [BOTH]
RETCODE = SetBridgeWindow (Adapter, Window, Socket, Size, State, Base)

ADAPTER Adapter;
WINDOW Window;
SOCKET Socket;
SIZE Size;
FLAGS8 State;
BASE Base;

The SetBridgeWindow service sets the current configuration of the bridge window specified by the
input parameters. If present on the adapter, PC Card bridge windows are required to allow access to
devices on PC Cards.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Specifies a bridge window on the adapter.

Socket I Sets physical socket the bridge window is currently assigned.

Size I Sets the size of the bridge window in bytes.

State I Defined as below. Sets the state of the bridge window hardware. This parameter can be
a combination of the following values:

Value Meaning

WS_IO If set, this bridge window routes host system I/O accesses to
the PC Card socket.

If reset, this bridge window routes host system memory
accesses to the PC Card socket.

WS_ENABLED If set, the bridge window is enabled and routing host system
accesses to a PC Card socket.

If reset, the bridge window is disabled.

Base O Sets the base address of the specified bridge window. It is the first address within the
host system memory or I/O address space routed to the PC Card socket.

Return Codes:
SUCCESS if all parameters are valid

BAD_ADAPTER if Adapter is invalid

BAD_ATTRIBUTE if requested State does not match the window's capabilities

BAD_BASE if the Base is invalid

BAD_SIZE if Size is invalid

BAD_SOCKET if Socket is invalid for Window

BAD_TYPE if WS_IO setting is invalid

BAD_WINDOW if Window is invalid

Comments
All parameters have been designed to map directly to the values returned by the GetBridgeWindow
service. This is intended to allow clients of Socket Services to retrieve current configuration
information with this service, make changes and then use the SetBridgeWindow service to modify
the configuration without having to create initial values for each parameter.

PROGRAM INTERFACE

74 ©2001 PCMCIA/JEITA

See Also InquireBridgeWindow, GetBridgeWindow, InquireWindow, GetWindow, SetWindow,
AccessConfigSpace.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 75

5.3.27 SetEDC [BOTH]
RETCODE = SetEDC (Adapter, EDC, Socket, State, Type)

ADAPTER Adapter;
EDC EDC;
SOCKET Socket;
FLAGS8 State;
FLAGS8 Type;

The SetEDC service sets the configuration of the EDC generator specified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Socket I Specifies the physical socket on the adapter that the EDC generator is to be assigned.

State I Sets the current state of the EDC generator. This field may be combination of the
following values:

Value Meaning

EC_UNI If set, EDC generator is computes in only one direction.
EC_WRITE determines whether computation is on read or write
accesses.

If reset, EDC generator is computes on both read and write
accesses.

EC_WRITE If set, EDC generator is computes only on write accesses.

If reset, EDC generator is computes only on read accesses.

This value is only valid if EC_UNI is set.

Type I Sets type of EDC generated. This parameter may be one of the following values:

Value Meaning

ET_CHECK8 EDC generated is 8-bit checksum.

ET_SDLC16 EDC generated is 16-bit CRC-SDLC.

ET_SDLC32 EDC generated is 32-bit CRC-SDLC.

Return Codes
SUCCESS if Adapter, EDC, Socket, State and Type are valid

BAD_ADAPTER if Adapter is invalid

BAD_ATTRIBUTE if State or Type is invalid

BAD_EDC if EDC is invalid

BAD_SOCKET if Socket is invalid

Comments
All parameters have been designed to map directly to the values returned by the GetEDC service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
GetEDC, make changes and then use this service to modify the configuration without having to
create initial values for each parameter.

See Also InquireEDC, GetEDC, StartEDC, PauseEDC, ResumeEDC, StopEDC, ReadEDC

PROGRAM INTERFACE

76 ©2001 PCMCIA/JEITA

5.3.28 SetPage [PC16]
RETCODE = SetPage (Adapter, Window, Page, State, Offset)

ADAPTER Adapter;
WINDOW Window;
PAGE Page;
FLAGS8 State;
OFFSET Offset;

The SetPage service configures the page specified by the input parameters. It is only valid for
memory windows (WS_IO is reset for the Window). This service is unsupported by CardBus PC Card.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Specifies a physical window on the adapter.

Page I Specifies the page within the Window.

State I Programs the state of the Page within the Window. This parameter can be a combination
of the following values:

Value Meaning

PS_ATTRIBUTE If set and Page is enabled, page is programmed to map PC
Card attribute memory into host system memory space.

If reset and Page is enabled, page is programmed to map PC
Card common memory into host system memory space.

PS_ENABLED If set, Page is enabled and maps PC Card memory into the
host system memory or I/O space.

If reset, Page is disabled.

Some hardware implementation may not allow individual pages
to be disabled, only entire windows. If there is only a single
page in the window, the window is disabled by this request.

This request returns BAD_ATTRIBUTE for multi-paged
windows if the pages cannot be individually disabled.

PS_WP If set, Page is write-protected by page mapping hardware in
socket.

If reset, Page is not write-protected by socket’s page-mapping
hardware. However, the PC Card memory may be write-
protected in other ways.

If set and the window does not support write-protection,
BAD_ATTRIBUTE is returned.

Offset I The offset of a PC Card’s memory to be mapped into host system memory space by this
page. The following formula may be used to calculate the system memory address to
access the PC Card memory being mapped by the page:

Base + (Page * 16 KBytes)

Return Codes
SUCCESS if Adapter, Offset, Page, State and Window are valid

BAD_ADAPTER if Adapter is invalid

BAD_ATTRIBUTE if State is invalid

BAD_OFFSET if Offset is invalid

BAD_PAGE if Page is invalid

BAD_WINDOW if Window is invalid

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 77

Comments
All parameters have been designed to map directly to the values returned by the GetPage service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
GetPage, make changes and then use this service to modify the configuration without having to
create initial values for each parameter.

All pages in windows which are subdivided into multiple pages are 16 KBytes in size. A window
with only a single page may be any size meeting the constraints returned by InquireWindow.

To map PC Card memory into system memory requires that both the WS_ENABLED value of the
State field used by Get/SetWindow be set and the PC_ENABLED value of the State field used by
Get/SetPage be set. For windows with WS_PAGED reset, the PS_ENABLED value is ignored by
SetPage. The window is enabled and disabled by the WS_ENABLED value of SetWindow. GetPage
for windows with WS_PAGED reset reports the value of WS_ENABLED for PS_ENABLED.

For windows with WS_PAGED set, WS_ENABLED acts as a global enable/disable for all pages
within the window. Once WS_ENABLED has been set using SetWindow, individual pages may be
enabled and disabled using SetPage and PS_ENABLED.

If WC_WENABLE is reported as set by InquireWindow, Socket Services preserves the state of
PS_ENABLED for each page in the window whenever WS_ENABLED is changed by SetWindow. If
WC_ENABLE is reported as reset by InquireWindow, the client must use SetPage to set the
PS_ENABLED state for each page within the window after WS_ENABLED is set with SetWindow.

See Also InquireWindow, GetWindow, SetWindow, GetPage

PROGRAM INTERFACE

78 ©2001 PCMCIA/JEITA

5.3.29 SetSocket [BOTH]
RETCODE = SetSocket (Adapter, Socket, SCIntMask, Vcontrol, VccLevel, VppLevels, State,

CtlInd, IREQRouting, IFType, IFIndex)
ADAPTER Adapter;
SOCKET Socket;
FLAGS8 SCIntMask;
PWRINDEX Vcontrol;
PWRINDEX VccLevel;
PWRINDEX VppLevels;
FLAGS8 State;
FLAGS8 CtlInd;
IRQ IREQRouting;
FLAGS8 IFType;
WORD IFIndex;

The SetSocket service sets the current configuration of the socket identified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Socket I Specifies a physical socket on the adapter.

SCIntMask I Sets mask for events that generate a status change interrupt when they occur on the
socket. If a value is set the event generates a status change interrupt if the following
conditions are met: The event is supported as indicated by the SCIntCaps parameter of
InquireSocket and status change interrupts have been enabled by SetAdapter.

This parameter is a combination of the SBM_x values defined in InquireSocket.

An attempt to set an event that is unsupported by SCIntCaps will not return an error.
GetSocket will only return values that are supported by SCIntCaps.

Vcontrol I This parameter takes on the following values:

Value Meaning

VCTL_CISREAD If reset, the VCC level and VPP[2::1] levels are controlled by the
VccLevel and VppLevels fields.

If set, the VCC level and VPP[2::1] levels are set to the value
indicated by the voltage sense signaling from the PC Card and
the VccLevel and VppLevels fields are ignored.

VCTL_OVERRIDE VCTL_OVERRIDE applies only to 16-bit PC Cards. The
CardBus PC Card interface requires the VCC level match the
value indicated by the voltage sense signaling from the PC
Card or this service returns an error.

If reset, the VCC level must match the value indicated by the
voltage sense signaling from the PC Card or this service
returns an error.

If set, the VccLevel need not match the value indicated by the
voltage sense signaling from the PC Card.

If the VccLevel does match the voltage sense signaling from
the PC Card, VCTL_OVERRIDE is reset when returned by
GetSocket.

Note: The VCTL_CISREAD and VCTL_OVERRIDE bits are mutually exclusive. If
both are set, BAD_ATTRIBUTE is returned. In addition, Socket Services will
reset these bits upon card removal.

Note: When initially powering a PC Card with SetSocket, if the VCTL_CISREAD
value is set, the PC Card is powered to the value indicated by the voltage
sense signaling from the card.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 79

VccLevel I Sets current power level of VCC signal. This is an index into the array of PWRENTRY
items returned by InquireAdapter. Valid values range from zero to one less than the
number of levels returned by InquireAdapter.

On Low Voltage capable systems Socket Services must observe that state of the VS1#
and VS2# pins when requesting voltage changes on the VCC and VPP[2::1] pins to
prevent inappropriate voltages being applied to the card unless VCTL_OVERRIDE is set.
The VCTL_OVERRIDE is provided to protect the card from a Low Voltage unaware
client. Proper procedure must be used to determine appropriate voltage levels for the
card, this includes assuring that systems that are not X.X V capable must be X.X V
aware to ensure that X.X V cards are not damaged. (See the Electrical Specification.)

When changing from one non-zero VCC to another non-zero VCC, Socket Services is
required to observe a Power-up/Power-down timing sequence. (See the Electrical
Specification.)

VppLevels I Sets current power level of VPP[2::1] signals. This is two indices into the array of
PWRENTRY items returned by InquireAdapter. Separate values are in this parameter
for the VPP1 and VPP2 signals. Valid values for each index range from zero to one less
than the number of levels returned by InquireAdapter.

Note: The VccLevel and VppLevels always return the actual levels currently applied
to the card.

State I Resets latched values representing state changes experienced by the socket hardware.
Only those values set in the InquireSocket SCRptCaps parameter are supported.
Attempts to reset unsupported values are ignored.

This parameter is a combination of the SBM_x values defined in InquireSocket for the
SCIntCaps and SCRptCaps parameters.

CtlInd I Sets socket controls and indicators. If a value is set, the corresponding control or
indicator is turned-on. If a value is reset, the corresponding control or indicator is turned-
off. Values supported by the socket are defined by the CtlIndCaps parameter returned by
InquireSocket.

This parameter is a combination of the SBM_x values defined in InquireSocket for the
CtlIndCaps parameter.

IREQRouting I Sets PC Card IREQ# routing. This parameter is an IRQ data type.

This parameter is ignored if IFType is not IF_IO or IF_CARDBUS. If IFType is IF_IO or
IF_CARDBUS, routing level and inverter state are validated even if routing is being
disabled.

This parameter is a combination of a binary value representing the IRQ level used for
routing the PC Card IREQ# signal and the following optional values:

Value Meaning

IRQ_INVALID If set, the binary value representing the IRQ level is invalid and
should be ignored. This bit may not be set with IRQ_HIGH.

If reset, the binary value representing the IRQ level is valid.

IRQ_HIGH If set, the PC Card IREQ# signal is inverted.

If reset, the PC Card IREQ# signal is routed without inversion.

IRQ_ENABLE If set, IREQ# routing is enabled.

If reset, IREQ# routing is not enabled and interrupts from a PC
Card in the socket are ignored.

IFType I Sets the current interface type. Uses the same definitions as the IFType parameter of
GetSocket.

When a CardBus PC Card is inserted in a socket, this field is ignored. Sockets
automatically configure to IF_CARDBUS when a CardBus PC Card is inserted.

IFIndex I Sets the Custom Interface setting when IFType is set to IF_CUSTOM. This is an index
into the array of dCustomIF items returned by InquireAdapter. Valid values range from
zero to one less than the number of interface numbers returned by InquireAdapter.

This field is ignored when IFType is not set to IF_CUSTOM.

PROGRAM INTERFACE

80 ©2001 PCMCIA/JEITA

Return Codes
SUCCESS if Adapter and Socket are valid

BAD_ADAPTER if Adapter is invalid

BAD_IRQ if IREQRouting not supported

BAD_SOCKET if Socket is invalid

BAD_TYPE if IFType not supported

BAD_VCC if VCC level is invalid

BAD_VPP if VPP1 or VPP2 level is invalid

BAD_ATTRIBUTE if both CCTL_CISREAD and VCTL_OVERRIDE are set

Comments
All parameters have been designed to map directly to the values returned by the GetSocket service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
GetSocket, make changes and then use this service to modify the configuration without having to
create initial values for each parameter.

See Also InquireSocket, GetSocket

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 81

5.3.30 SetWindow [PC16]
RETCODE = SetWindow (Adapter, Window, Socket, Size, State, Speed, Base)

ADAPTER Adapter;
WINDOW Window;
SOCKET Socket;
SIZE Size;
FLAGS8 State;
SPEED Speed;
BASE Base;

The SetWindow service sets the configuration of the window specified by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Window I Window number. Specifies a physical window on the adapter. May refer to either a
hardware or an adapter window.

Socket I Assigns the Window to the specified socket. Socket numbers range from zero to fifteen
using bits 0 to 3. The rest of the bits in this field are binding specific.

Size I Sets the window’s size. If Size is equal to zero (0), the window is the maximum size that
may be represented by the data type used for this parameter plus one. For example, if
the data type used for Size is a word and it is expressed in units of a byte, a value of
zero represents a window size of 65,536 bytes.

State I Sets the state of the window hardware as defined as below. This parameter can be a
combination of the following values:

Value Meaning

WS_IO If set, window maps registers on a 16-bit PC Card into the host
system's I/O address space.

If reset, window maps memory address space on a 16-bit PC
Card into the host system's memory address space.

WS_ENABLED If set, window is enabled and mapping a 16-bit PC Card into
the host system memory or I/O address space.

If reset, window is disabled.

WS_16BIT This value is only valid for 16-bit PC Cards.

If set, window is programmed for a 16-bit data bus width.

If reset, window is programmed for an 8-bit data bus width.

WS_PAGED If set, window is subdivided into multiple 16 KByte pages
whose card offset addresses may be set individually using
SetPage.

If reset, window is a single page.

This value is only valid for memory windows (WS_IO reset) on
16-bit PC Cards.

WS_EISA If set, window is using EISA I/O mapping.

If rest, window is using ISA I/O mapping.

This value is only valid for I/O windows (WS_IO set).

WS_CENABLE If set, accesses to I/O ports in EISA common I/O areas
generate card enables.

If reset, accesses to I/O ports in EISA common I/O areas are
ignored.

This value is only valid for I/O windows (WS_IO set) that have
WS_EISA set.

PROGRAM INTERFACE

82 ©2001 PCMCIA/JEITA

Speed I This parameter is the access speed the client wishes to use for the window. It uses the
format of the Device Speed Code and Extended Device Speed Codes of the Device
Information Tuple. (See the Metaformat Specification and the Electrical
Specification.)

If Socket Services does not support the speed requested, it uses the next slowest speed
it supports.

For Socket Services, Bit 7 of the Speed is reserved and is reset to zero (0).

This parameter is ignored for I/O windows (WS_IO set).

Base I Programs the base address of the specified window. It is the first address within the
system memory or I/O space to which the window responds.

Return Codes
SUCCESS if all parameters are valid

BAD_ADAPTER if Adapter is invalid

BAD_ATTRIBUTE if requested State does not match the window’s capabilities

BAD_BASE if the Base is invalid

BAD_SIZE if Size is invalid

BAD_SOCKET if Socket is invalid for Window

BAD_SPEED if Speed is too slow

BAD_TYPE if WS_IO setting is invalid

BAD_WINDOW if Window is invalid

Comments
All parameters have been designed to map directly to the values returned by the GetWindow service.
This is intended to allow clients of Socket Services to retrieve current configuration information with
GetWindow, make desired changes and then use this service to modify the configuration without
having to create initial values for each parameter.

The following comments apply to 16-bit PC Card only:

• For memory mapping windows, the area of the PC Card memory array mapped into the host
system memory space is managed by GetPage and SetPage requests.

• To map PC Card memory address space into host system memory address space requires that
both the WS_ENABLED value of the State parameter used by Get/SetWindow be set and the
PC_ENABLED value of the State parameter used by Get/SetPage be set. For windows with
WS_PAGED reset, the PS_ENABLED value is ignored by SetPage. The window is enabled and
disabled by the WS_ENABLED value of SetWindow. GetPage for windows with WS_PAGED
reset reports the value of WS_ENABLED for PS_ENABLED.

• For windows with WS_PAGED set, WS_ENABLED acts as a global enable/disable for all pages
within the window. Once WS_ENABLED has been set using SetWindow, individual pages may
be enabled and disabled using SetPage and PS_ENABLED.

• If WC_WENABLE is reported as set by InquireWindow, Socket Services preserves the state of
PS_ENABLED for each page in the window whenever WS_ENABLED is changed by
SetWindow. If WC_ENABLE is reported as reset by InquireWindow, the client must use
SetPage to set the PS_ENABLED state for each page within the window after WS_ENABLED is
set with SetWindow.

See Also InquireWindow, GetWindow, GetPage, SetPage, InquireBridgeWindow,
GetBridgeWindow, SetBridgeWindow

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 83

5.3.31 StartEDC [BOTH]
RETCODE = StartEDC (Adapter, EDC)

ADAPTER Adapter;
EDC EDC;

The StartEDC service starts a previously configured EDC generator specified by the input
parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

Comments
This service loads the EDC generator with any required initialization value to properly compute the
configured type of EDC.

See Also InquireEDC, GetEDC, SetEDC, PauseEDC, ResumeEDC, StopEDC, ReadEDC

PROGRAM INTERFACE

84 ©2001 PCMCIA/JEITA

5.3.32 StopEDC[BOTH]
RETCODE = StopEDC (Adapter, EDC)

ADAPTER Adapter;
EDC EDC;

The StopEDC service stops EDC generation on a configured and computing EDC generator specified
by the input parameters.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

EDC I Specifies a physical EDC generator on the adapter.

Return Codes
SUCCESS if Adapter and EDC are valid

BAD_ADAPTER if Adapter is invalid

BAD_EDC if EDC is invalid

See Also InquireEDC, GetEDC, SetEDC, StartEDC, PauseEDC, ResumeEDC, ReadEDC

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 85

5.3.33 VendorSpecific [BOTH]
RETCODE = VendorSpecific (Adapter …)

ADAPTER Adapter;

This service is vendor specific. The service is reserved for vendors to add proprietary extensions to
the Socket Services interface. No guarantee is made that any mode-specific pointer conversion will be
handled correctly. Vendors should attempt to use the registers in a non-mode specific manner.

Parameter I/O Description

Adapter I Specifies a physical adapter on the host system.

Return Codes
SUCCESS if parameters are valid

Other return codes are specific to the Socket Services handler.

Comments
This service may have additional parameters that are specific to a particular vendor’s handler.

Before using this service, a client should use the GetVendorInfo service to confirm the implementer
to validate whether the vendor specific services are available.

See Also GetVendorInfo

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 87

6. USING SOCKET SERVICES

This section describes how various services within Socket Services are intended to be used. This
section has been included as an aid to understanding how Socket Services is intended to work. The
approaches outlined in this section are for clarification only and may not be required.

6.1 Determining Socket Services Resources
The first task any client of Socket Services performs is determining that Socket Services is installed.
The GetAdapterCount service is used for presence detection returning Signature and TotalAdapters.
Next, the client verifies that a compatible Socket Services is installed. The client checks compatibility
by verifying the Socket Services Compliance level returned by GetSSInfo. If this Compliance level is
acceptable, the client may also wish to verify whether the vendor’s version is acceptable by checking
the ASCIIZ string describing the implementer (Type = 0) and the Release number returned by
GetVendorInfo. This last step is optional.

Once an acceptable Socket Services handler has been verified, the client may begin to determine the
capabilities of the hardware. GetAdapterCount returns the number of adapters present in
NumAdapters. The client may then call InquireAdapter for each adapter to determine its capabilities.

InquireAdapter reports the number of sockets on each adapter, the number of memory or I/O
mapping windows available on the adapter, the number of EDC generators and whether certain
capabilities are available on individual sockets or are implemented on an adapter basis. For instance,
an adapter may support hardware indicators only at the adapter level. If a client sets the indicator for
Busy Status on one socket and resets it on another socket, the indicator will be left on since the
indicator must represent the state of all sockets.

Different hardware implementations may implement window management differently.
InquireAdapter reports the total number of windows available on the adapter. However, some
windows may only be available on specific sockets. In other implementations they may be assignable
to any socket. The InquireWindow service is used to determine a specific window’s characteristics.
The InquireSocket service is used to determine each socket’s characteristics.

Error Detection capability is determined in the same manner, using the InquireEDC service. Error
detection generators may be dedicated to a particular socket, or useable with more than one socket.

Higher-level software determining Socket Services capabilities may construct RAM-based tables
describing the configuration found. These tables might contain information relating to the assignment
of Socket Services resources.

6.2 Status Change Handling
A Socket Services client may note status changes in two ways. First, the client may poll Socket
Services on a socket-by-socket basis to determine if a change has occurred. This polling may take
place at any time that Socket Services is allows entry. The software may poll at prescribed times (such
as before using a Socket Services resource) or as prompted by an external source (such as a timer
interrupt).

The second approach is to program one or more sockets to generate an interrupt when a status
change occurs. Different hardware implementations may limit the number of interrupts available. In
these situations more than one socket may be assigned to the same interrupt. The status change

USING SOCKET SERVICES

88 ©2001 PCMCIA/JEITA

interrupt handler uses the AcknowledgeInterrupt service to determine which socket experienced the
status change.

The AcknowledgeInterrupt service returns a bit-map representing all of the sockets administered by
a particular adapter. If a bit is set, the corresponding socket has a condition that could have caused
the interrupt. This bit represents current socket status AND-ed with the socket’s status change
enables.

The final act of the client’s status change interrupt handler is to complete interrupt processing by
resetting host hardware to prepare for future interrupts. The handler then returns to the interrupted
process concluding interrupt handling. Processing continues in the interrupted routine.

During background processing, outside of the hardware interrupt handler, the Socket Services client
polls each socket indicating a change with the GetStatus service. Returned values indicate the cause
of the interrupt.

6.3 Bus-Expanders or Docking Stations
In some instances, clients may choose to expand the number of PC Card sockets on a host by plugging
an expander of some type into a socket. An extension to Socket Services is required to address these
additional sockets, if they are to be handled transparently to Socket Services clients.

One approach might be to address these sockets as if they existed on another adapter. Software
resident in the host could intercept calls to Socket Services and filter the GetAdapterCount service
and all services addressing this new ‘adapter' and the sockets it contains.

The above approach is only one example. The actual implementation of expanding the number of PC
Card sockets using an existing socket is vendor specific.

Docking stations are another situation that is quite similar to bus-expanders. An algorithm for
handling hot-dock events is defined in section 3.6 Docking.

6.4 Using XIP
eXecute-In-Place (XIP) applications require sockets which support memory-mapped windows. In
addition, unlike many other clients of PC Card sockets, XIP applications require exclusive, full-time
access to the these resources. Higher-level software that utilizes Socket Services resources must
ensure that resources used by XIP are dedicated and are not shared with other applications.

6.5 Power Management
Power Management can be an extremely complex issue within host environments. Socket Services
merely provides a means to manipulate the power levels available on an adapter, if they are
adjustable in the hardware implementation. Socket Services does not deal with Power Management
capabilities available on installed cards. These capabilities are expected to be utilized by card-aware
drivers through a higher-level software service.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 89

APPENDIX-A

7. SERVICE CODES

Table 7–1 Service Codes–Numerical Order

Service Code Value Service Code Value

GetAdapterCount 80H SetEDC 97H

Reserved for historical purposes 81H–82H StartEDC 98H

GetSSInfo 83H PauseEDC 99H

InquireAdapter 84H ResumeEDC 9AH

GetAdapter 85H StopEDC 9BH

SetAdapter 86H ReadEDC 9CH

InquireWindow 87H GetVendorInfo 9DH

GetWindow 88H AcknowledgeInterrupt 9EH

SetWindow 89H GetSetPriorHandler 9FH

GetPage 8AH GetSetSSAddr A0H

SetPage 8BH GetAccessOffsets A1H

InquireSocket 8CH AccessConfigurationSpace A2H

GetSocket 8DH InquireBridgeWindow A3H

SetSocket 8EH GetBridgeWindow A4H

GetStatus 8FH SetBridgeWindow A5H

ResetSocket 90H Reserved for future use A6H–ADH

Reserved for historical purposes 91H–94H VendorSpecific AEH

InquireEDC 95H Reserved for Card Services AFH

GetEDC 96H

Note: Reserved entries should not be used. They are reserved for historical purposes, Card Services
use, or for future expansion.

SERVICE CODES

90 ©2001 PCMCIA/JEITA

Table 7–2 Service Codes  Alphabetic Order

Service Code Value Service Code Value

AccessConfigurationSpace A2H InquireWindow 87H

AcknowledgeInterrupt 9EH PauseEDC 99H

GetAccessOffsets A1H ReadEDC 9CH

GetAdapter 85H Reserved for Card Services AFH

GetAdapterCount 80H Reserved for future use A6H–ADH

GetBridgeWindow A4H Reserved for historical purposes 81H–82H

GetEDC 96H Reserved for historical purposes 91H–94H

GetPage 8AH ResetSocket 90H

GetSetPriorHandler 9FH ResumeEDC 9AH

GetSetSSAddr A0H SetAdapter 86H

GetSocket 8DH SetBridgeWindow A5H

GetSSInfo 83H SetEDC 97H

GetStatus 8FH SetPage 8BH

GetVendorInfo 9DH SetSocket 8EH

GetWindow 88H SetWindow 89H

InquireAdapter 84H StartEDC 98H

InquireBridgeWindow A3H StopEDC 9BH

InquireEDC 95H VendorSpecific AEH

InquireSocket 8CH

Note: Reserved entries should not be used. They are reserved for historical purposes, Card Services
use, or for future expansion.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 91

APPENDIX-B

8. RETURN CODES

Table 8–1 Return Codes  Numerical Order

Return Code Value Description

SUCCESS 00H The request succeeded

BAD_ADAPTER 01H Specified adapter is invalid

BAD_ATTRIBUTE 02H Specified attribute is invalid

BAD_BASE 03H Specified base system memory address is invalid

BAD_EDC 04H Specified EDC generator is invalid

Reserved 05H Reserved for historical purposes

BAD_IRQ 06H Specified IRQ level is invalid

BAD_OFFSET 07H Specified PC Card offset is invalid

BAD_PAGE 08H Specified page is invalid

READ_FAILURE 09H Unable to complete read request

BAD_SIZE 0AH Specified size is invalid

BAD_SOCKET 0BH Specified socket is invalid

Reserved 0CH Reserved for historical purposes

BAD_TYPE 0DH Specified window or interface type is invalid

BAD_VCC 0EH Specified VCC power index is invalid

BAD_VPP 0FH Specified VPP1 or VPP2 power index is invalid

Reserved 10H Reserved for historical purposes

BAD_WINDOW 11H Specified window is invalid

WRITE_FAILURE 12H Unable to complete write request

Reserved 13H Reserved for historical purposes

NO_CARD 14H No PC Card in socket

BAD_SERVICE 15H Service not supported

BAD_MODE 16H Requested processor mode is not supported

BAD_SPEED 17H Specified speed is invalid/unavailable

BUSY 18H Unable to process request at this time - retry later

Reserved 19H - FFH Reserved for Card Services and future expansion

Note: Return Codes common to Card Services use the same values. Reserved values should not be
used. They are reserved for historical purposes, Card Services use, or for future expansion.

RETURN CODES

92 ©2001 PCMCIA/JEITA

Table 8–2 Return Codes  Alphabetic Order

Return Code Value Description

BAD_ADAPTER 01H Specified adapter is invalid

BAD_ATTRIBUTE 02H Specified attribute is invalid

BAD_BASE 03H Specified base system memory address is invalid

BAD_EDC 04H Specified EDC generator is invalid

BAD_SERVICE 15H Service not supported

BAD_IRQ 06H Specified IRQ level is invalid

BAD_MODE 16H Requested processor mode is not supported

BAD_OFFSET 07H Specified PC Card offset is invalid

BAD_PAGE 08H Specified page is invalid

BAD_SIZE 0AH Specified size is invalid

BAD_SOCKET 0BH Specified socket is invalid

BAD_SPEED 17H Specified speed is invalid/unavailable

BAD_TYPE 0DH Specified window or interface type is invalid

BAD_VCC 0EH Specified VCC power index is invalid

BAD_VPP 0FH Specified VPP1 or VPP2 power index is invalid

BAD_WINDOW 11H Specified window is invalid

BUSY 18H Unable to process request at this time - retry later

NO_CARD 14H No PC Card in socket

READ_FAILURE 09H Unable to complete read request

Reserved 05H Reserved for historical purposes

Reserved 0CH Reserved for historical purposes

Reserved 10H Reserved for historical purposes

Reserved 13H Reserved for historical purposes

Reserved 19H - FFH Reserved for Card Services and future expansion

SUCCESS 00H The request succeeded

WRITE_FAILURE 12H Unable to complete write request

Note: Return Codes common to Card Services use the same values. Reserved values should not be
used. They are reserved for historical purposes, Card Services use, or for future expansion.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 93

APPENDIX-C

9. SOCKET SERVICES BINDINGS

9.1 Overview
A Socket Services binding answers the following three questions for a specific host environment:

How is the presence of Socket Services determined?

How are Socket Services requests made?

How are arguments passed to and from Socket Services?

A specific host environment for a Socket Services client is defined by the operating system in use and
the host platform’s architecture. Multi-mode processors may require separate bindings for each mode
used by an operating system. Operating systems that emulate other operating systems may also
implement more than one Socket Services binding.

9.2 Presence Detection and Installation Notification
A client determines whether Sockets Services is available in the host environment through a binding
specific presence detection mechanism. All bindings specify a method of determining the presence of
Socket Services using operations that have well-defined responses whether Socket Services is actually
installed or not. A Socket Services client may use the Socket Services request mechanism for presence
detection if the binding guarantees a negative response is returned if Socket Services is not installed.

Socket Services handlers may be installed before or after Card Services. If a Socket Services handler is
installed before Card Services, Card Services uses the binding specific presence detection mechanism
to locate the handler. If a Socket Services handler is installed after Card Services, the Socket Services
handler notifies Card Services of its installation using a binding specific method.

9.3 Making Socket Services Requests
Socket Services requests are made in a binding-specific manner. Software interrupts, far or near calls,
operating system device driver interfaces and other methods of making requests of Socket Services
may be appropriate depending on the host system’s environment. Environments which emulate other
environments may actually provide more than one method of making a Socket Services request. If a
Socket Services implementation is not able to satisfy a request from a client in an emulated
environment, it must insure the request is failed.

SOCKET SERVICES BINDINGS

94 ©2001 PCMCIA/JEITA

9.4 Argument Passing
A Socket Services binding defines how arguments are passed to and from Socket Services. Depending
on the host environment, arguments may be passed in registers, in stack-based packets or even in
global data areas. There are a number of possible input arguments to a Socket Services request. These
include:

Service The service that Socket Services is being requested to perform.

Adapter The hardware which connects a host system bus to 68-pin PC Card sockets.

Window An area in a host system’s memory or I/O address space through which a PC Card
may be accessed.

Page A subdivision of a window. If there is more than one page in a window, all pages are
16 KBytes in size.

Socket The 68-pin socket a PC Card is inserted in.

Counts Number of items.

Attributes Typically a bit-mapped field that describes characteristics.

Data Area Pointer to a Socket Services data area. Provided to Socket Services by its clients in
environments where data pointers must be manufactured by the operating system.

Buffer Pointer to a data buffer.

Offset An offset into a PC Card’s address space.

Many Socket Services interfaces do not use all of the arguments in every request. If an input
argument is not used for a service, but the binding provides for a consistent calling structure, the
argument is ignored.

Socket Services interfaces may modify arguments to return information. If Socket Services does not
use an argument to return information, it is returned unmodified.

All Socket Services interfaces return Status. This is a RETCODE as defined in a previous section. A
binding may use the same or an overlapping representation for the Service input argument and Status.

9.5 Power Management and Indicators
Power management and indicators may be available on a per adapter or per socket basis. To provide
a consistent interface, Socket Services provides access to these services on a socket basis. It is expected
that a hardware implementation that only provides power management and/or indicator control at
the adapter level shall provide a Socket Services handler that manages those resources for the entire
adapter based on requests to individual sockets.

Socket Services does indicate whether power management and indicator control is performed at the
adapter or socket level. However, by providing only one control point (the socket), a client of Socket
Services is not required to provide two types of controlling routines.

9.6 x86 Architecture Binding

9.6.1 Overview
This section describes the Socket Services bindings for x86-based computers using various system bus
architectures.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 95

There are a number of members of the x86 processor family offering up to three modes of operations:
real, protect and virtual (also known as V86). The x86 family also varies in addressable memory space
(1, 16 or 4096 megabytes), register size (16 or 32-bit) and memory management capabilities (paging).

Processor Register Size Address Space Real Protect Virtual Paging

x86 16 1 MB Yes No No No

286 16 16 MB Yes Yes No No

386 and above 32 4096 MB Yes Yes Yes Yes

A real mode client is limited to one megabyte of address space and 16-bit registers. In protect mode,
clients can address much larger amounts of memory with 16 or, on some processors, 32-bit registers.

In V86 mode, multiple real mode clients operate independently as if they were the only real mode
client. A control program running in protect mode remaps memory space so each client believes it is
operating in the first megabyte of address space, addressing physical memory.

Different operating systems exploit different features of these processors. Due to the differences
between the capabilities of x86 processors and the manner that x86 operating systems use the
processor, this section actually defines four separate types of clients that use Socket Services.

An environment must provide a binding for each type of client it supports. The four types of clients
defined by this section are:

DOS real mode clients

OS/2 16-bit protect mode clients

Windows 16-bit protect mode clients

Windows 32-bit protect mode VxD clients

9.6.2 Presence Detection
Before Card Services has been loaded, all Socket Services clients determine the presence of Socket
Services by making a Socket Services GetAdapterCount request in real-mode. If the request returns
with the [CF] set or the Signature field is not equal to the ASCII characters 'SS', Socket Services is not
installed.

If the GetAdapterCount request returns with the [CF] reset and the Signature field is set to the ASCII
characters 'SS', Socket Services is installed. The Socket Services client then performs real-mode
GetSSInfo requests to determine how many Socket Services handlers are installed in the host system
and which adapters each Socket Services handler is managing. See the GetSSInfo service description
for details.

For each Socket Services handler located using the GetSSInfo request, the Socket Services client
performs a real-mode GetSetSSAddr request to determine the entry point to use for subsequent
Socket Services requests to the handler. Separate GetSetSSAddr requests are required for each
processor mode used by the Socket Services client. See the GetSetSSAddr service description for
details.

9.6.3 Installation Notification
If a Socket Services handler is installed after Card Services has loaded, the handler notifies Card
Services of its presence using Card Services AddSocketServices or ReplaceSocketServices requests.

SOCKET SERVICES BINDINGS

96 ©2001 PCMCIA/JEITA

How the Socket Services handler locates Card Services and makes Card Services requests is binding
specific. See the Card Services Specification for details.

9.6.4 Making Socket Services Requests
Until Card Services completes its installation, all Socket Services requests are made by placing the
appropriate values in the registers indicated below and performing an INT 1AH in real-mode. If a
Socket Services handler was installed prior to Card Services, requests made to the handler after Card
Services completes its initialization use the mode-specific entry point returned by GetSetSSAddr as
described above.

If a Socket Services handler is installed after Card Services, as described in the Installation
Notification Section above, Card Services uses the entry point provided with the arguments to the
Card Services AddSocketServices or ReplaceSocketServices requests.

9.6.5 Argument Passing
Two methods are used for passing arguments: directly in the CPU registers and in a packet that is
referenced by a binding specific pointer. The CPU register method is the standard method used and
is always available for backwards compatibility. The packet method is used with the entry-point
retrieved via GetSetSSAddr Subfunc=04h.

9.6.5.1 CPU Register Interface Usage

The Socket Services interface in the x86 environment passes arguments in registers using the
following guidelines:

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 97

Entry:

[AH] Service Desired

[AL] Adapter

[BH] Window

[BL] Page or Socket

[CX] Count

[DX] Attributes

[DS]:[(E)SI] Data Pointer Pointer to Socket Services data area, not required and ignored by real-mode
Socket Services requests. Card Services (the Socket Services client)
determines the appropriate value for protect-mode requests in one of two
ways.

For each Socket Services handler installed before Card Services, this value is
determined by the information returned by a GetSetSSAddr request to the
handler made during presence detection operations.

For each Socket Services handler installed after Card Services, this value is
provided to Card Services by the Card Services AddSocketServices or
ReplaceSocketServices request used by each Socket Services handler to
notify Card Services of the handler’s presence.

For OS/2 and Windows 16-bit protect modes the [DS]:[SI] register pair are a
selector:offset pointer to the Socket Services data area. Windows 32-bit
protect mode (flat model) VxD clients pass the 32-bit offset of the Socket
Services data area in the [ESI] register.

[ES]:[(E)DI] Buffer Pointer to a data buffer for returning information to client.

For real-mode the [ES]:[DI] register pair are a segment:offset pointer to the
buffer. For OS/2 and Windows 16-bit protect modes the [ES]:[DI] register pair
are a selector:offset pointer to the buffer. For Windows 32-bit protect mode
(flat model) VxD clients the [EDI] register is the 32-bit offset of the buffer.

[DI] Offset Used by SetPage to set offset of PC Card’s memory mapped into host system
memory space. Expressed in 4 KByte units.

Base Used by SetWindow to specify window’s base address in host system
address space. I/O window bases are expressed in bytes. Memory windows
are expressed in 4 KByte units.

Exit:

[CF] Status Set = error

Reset = success

If [CF] set

[AH] Non SUCCESS Return Code

else

[AH] SUCCESS Return Code

Please note that these are guidelines used to develop the service interfaces and exceptions have been
made for specific services. See the individual service bindings for the x86 architecture.

Whenever possible, the interface preserves the contents of all registers unless they are used to return
information. For bit-mapped fields, bits within a field (or register) are numbered beginning with zero.
Bit 0 is the least significant bit within the register.

For all services, the [CF] indicates whether the service was successful. If the [CF] is reset on exit, the
service was successful. If the [CF] is set on exit, the service failed. The [AH] register always contains a
RETCODE on exit. The only exception to this convention is determining the presence of Socket
Services with the GetAdapterCount service. There is no guarantee of the state of the [CF] or the [AH]
register if no Socket Services handler is present.

SOCKET SERVICES BINDINGS

98 ©2001 PCMCIA/JEITA

9.6.5.2 Packet Interface Usage

9.6.5.2.1 Overview

The packet interface passes parameters via a packet that is pointed to by a pointer on the stack. In c-
style notation, the entry point for the packet interface is defined as:

void SSPacketEntryPoint (FAR *fpArgPacket)

Note: The usage of a C-style function definition provides processor and mode
independence in the definition. Implementers using the packet interface
must take care in utilizing the correct mode.

For all packet entry point modes the parameters are passed in a packet that is generally structured as
shown below. Each entry mode binding (e.g. x86 real mode, OS/2, Win 16 and Win32) for Socket
Services has a separate section to illustrate the details of the packet for each. Where there are
differences, those are highlighted with shading.

Offset Size Description and Usage (RE: x86 register name)

0 2 Segment or Selector of Buffer (ES)

2 2 Segment or Selector of Data Pointer (DS)

4 4 Offset of Buffer ([E]DI)

8 4 Offset of Data Pointer ([E]SI)

12 4 Reserved (BP)

16 4 Reserved (SP)

20 1 Page or Socket (BL)

21 1 Window (BH)

22 2 Reserved (hi word EBX)

24 4 Attributes ([E]DX)

28 4 Count ([E]CX)

32 1 Adapter (AL)

33 1 Service Code and RETCODE (AH)

34 2 Reserved (hi word of EAX)

36 2 Reserved (IP)

38 2 Reserved (CS)

40 2 Status - bit 0 only, all others reserved (flags)

42 2 n = Additional Arguments Buffer Length

44 n Additional Arguments Buffer

The additional arguments are formatted where there is a control word before the data for the
argument and bit 0 of that control word is a ‘valid/supported’ flag. This bit is set by Socket Services
to inform Card Services whether or not the feature is supported and that the data in the rest of the
argument is valid.

For example, lets imagine an additional argument named Foo that has two bytes of data. We’ll use
offset of x for the start of this argument. Note that the actual purpose and data contents of 1 would
described in the functional portion of the Socket Services standard:

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 99

Offset Size Description and Usage

… … …

x 2 Control byte for Foo

Bit 0 = Supported/Valid

Bits 1-15 = Reserved

x+2 2 Foo

Please note that these are guidelines used to develop the service interfaces and exceptions have been
made for specific services. See the individual service bindings for the packet interface.

Whenever possible, the interface preserves the contents of all packet fields unless they are used to
return information. For bit-mapped fields, bits within a field are numbered beginning with zero. Bit 0
is the least significant bit within the field.

For all services, bit 0 of the Status field (offset 40) indicates whether the service was successful. If this
bit is reset on exit, the service was successful. If this bit is set on exit, the service failed. The Return
Code field always contains a RETCODE on exit.

9.6.5.2.2 Packet Interface - real-mode x86

This packet is used when the Socket Services is running in x86 real mode. In this situation the Buffer
and Data Pointer arguments need x86 segments.

Offset Size Description and Usage

0 2 Segment of Buffer

2 2 Segment of Data Pointer

4 4 Offset of Buffer

8 4 Offset of Data Pointer

12 4 Reserved

16 4 Reserved

20 1 Page or Socket

21 1 Window

22 2 Reserved

24 4 Attributes

28 4 Count

32 1 Adapter

33 1 Service Code

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 n = Additional Arguments Buffer Length

44 n Additional Arguments Buffer

9.6.5.2.3 Packet Interface - OS/2

This packet is used when the Socket Services is running in OS/2 protected mode. In this situation the
Buffer and Data Pointer arguments need x86 selectors.

SOCKET SERVICES BINDINGS

100 ©2001 PCMCIA/JEITA

Offset Size Description and Usage

0 2 Selector of Buffer

2 2 Selector of Data Pointer

4 4 Offset of Buffer

8 4 Offset of Data Pointer

12 4 Reserved

16 4 Reserved

20 1 Page or Socket

21 1 Window

22 2 Reserved

24 4 Attributes

28 4 Count

32 1 Adapter

33 1 Service Code

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 n = Additional Arguments Buffer Length

44 n Additional Arguments Buffer

9.6.5.2.4 Packet Interface - Win-16

This packet is used when the Socket Services is running in Windows 16-bit protected mode. In this
situation the Buffer and Data Pointer arguments need x86 selectors.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 101

Offset Size Description and Usage

0 2 Selector of Buffer

2 2 Selector of Data Pointer

4 4 Offset of Buffer

8 4 Offset of Data Pointer

12 4 Reserved

16 4 Reserved

20 1 Page or Socket

21 1 Window

22 2 Reserved

24 4 Attributes

28 4 Count

32 1 Adapter

33 1 Service Code

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 n = Additional Arguments Buffer Length

44 n Additional Arguments Buffer

9.6.5.2.5 Packet Interface - Win32 VxD

This packet is used when the Socket Services is running as a Windows protected mode VxD. In this
situation the Buffer and Data Pointer arguments are simple 32-bit pointers.

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Offset of Buffer

8 4 Offset of Data Pointer

12 4 Reserved

16 4 Reserved

20 1 Page or Socket

21 1 Window

22 2 Reserved

24 4 Attributes

28 4 Count

32 1 Adapter

33 1 Service Code

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 n = Additional Arguments Buffer Length

44 n Additional Arguments Buffer

SOCKET SERVICES BINDINGS

102 ©2001 PCMCIA/JEITA

9.6.6 Assumptions and Constraints
This section describes assumptions and constraints of the x86 architecture binding.

9.6.6.1 ROM BIOS Located

The Socket Services interface is intended to allow the handler to be located within an IBM-PC
compatible ROM BIOS. However, if Socket Services is not required for performing Initial Program
Load (IPL) or bootstrap loading, Socket Services may be implemented as a device driver or a
Terminate and Stay Resident (TSR) program.

9.6.6.2 Adapters Supported

The Socket Services interface allows multiple adapters containing one or more PC Card sockets. Since
the TotalAdaptors is passed in the eight-bit [AL] register the theoretical limit is two hundred and fifty-
five (255) adapters. However, the constraints imposed by locating Socket Services in ROM BIOS may
impose a smaller limit. The actual limit is vendor specific.

Adapters are numbered from zero (0) to the maximum (one less than the number of adapters
installed).

9.6.6.3 EDC Generators

Error Detection Code generators are optional. EDC generators are numbered from zero (0) to the
maximum (one less than the number returned by InquireAdapter).

9.6.6.4 Sockets Supported

The Socket Services interface allows multiple PC Card sockets per adapter. The socket number is
passed in the eight-bit [BL] register. However, due to the fact a bit-map of assignable sockets is used
in InquireWindow and in InquireEDC, the theoretical maximum is sixteen (16) sockets per adapter.
As with adapters, the constraints imposed by locating Socket Services in ROM BIOS may impose a
smaller limit on the number of sockets supported. An adapter may support any number of sockets,
from one to the theoretical maximum of sixteen. If a system has more than one adapter, each adapter
may support a different number of sockets.

Sockets are numbered from zero (0) to one less than the number installed with a maximum of sixteen
sockets per adapter.

9.6.6.5 Windows Supported

The Socket Services interface is designed without any assumptions about how or whether PC Cards
are mapped into the host system’s I/O or memory address space. This requires a mechanism to
indicate which windows can be mapped to a particular socket. Since the number of sockets per
adapter is limited to sixteen (16), the 16-bit [CX] register is used to indicate which sockets may be
mapped with a particular window.

Windows are numbered from zero (0) to the maximum (one less than the number available on the
adapter). Since the number of windows is returned in a byte-wide register, the theoretical maximum
number is two hundred and fifty-five (255). However, since windows are identified starting with zero
(0), the maximum window identifier is two hundred and fifty-four (254).

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 103

9.6.7 Individual Service Bindings

9.6.7.1 CPU Register Usage Bindings

The following sections describe how the individual services are bound when using the CPU register
binding for IBM-PC compatible architectures.

9.6.7.1.1 AccessConfigurationSpace

Entry:

[AH] ACCESS_CFG_SPACE

[AL] Adapter

[BH] Function 0⋅⋅7

[BL] Socket

[CH] Action Read = 00H

Write = 01H

[CL] Location On a four byte boundary

[EDX] Data

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[EDX] Data

9.6.7.1.2 AcknowledgeInterrupt

Entry:

[AH] ACK_INTERRUPT

[AL] Adapter 0 .. Max_Adapter

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[CX] Sockets

SOCKET SERVICES BINDINGS

104 ©2001 PCMCIA/JEITA

9.6.7.1.3 GetAccessOffsets

Entry:

 [AH] ACCESS_OFFSETS

[AL] Adapter

[BH] Mode 00 = Real Mode

01 = 16:16 Protect

02 = 16:32 Protect

03 = 00:32 Protect

[CX] NumDesired

[ES]:[(E)DI] pBuffer

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[DX] NumAvail

[ES]:[(E)DI] pBuffer

All modes return 16-bit offsets. These offsets need to be combined with information returned by
GetSSAddr describing the location of the code segment. Offsets returned by this service are relative
to the code segment.

For real-mode, 16:16 and 16:32, the routines at these offsets use FAR RET instructions to return to the
caller requiring they be invoked with a FAR CALL instruction. In 0:32 (flat) protect-mode, the
routines at the returned offsets use NEAR RET instructions and need to be invoked with a NEAR
CALL instruction.

9.6.7.1.4 GetAdapter

Entry:

 [AH] GET_ADAPTER

[AL] Adapter

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[DH] State Bit 0 = AS_POWERDOWN

Bit 1 = AS_MAINTAIN

[DI] SCRouting Bit 0⋅⋅4 = IRQ level

Bit 6 = IRQ_HIGH

Bit 7 = IRQ_ENABLED

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 105

9.6.7.1.5 GetAdapterCount

Entry:

 [AH] GET_ADP_CNT

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[AL] TotalAdapters If [CF] reset

[AH] is SUCCESS and Signature is 'SS'

[CX] Signature

Note: This service is used to determine if a Socket Services handler is installed in
the host system. The handler may share the Socket Services interrupt vector
with other, unrelated handlers. There is no guarantee these other, unrelated
handlers will properly reject a Socket Services GetAdapterCount request.
The client should confirm Signature contains 'SS' before using
TotalAdapters. It is suggested the client set Signature to a value other than
'SS' before invoking this service to insure the return value is from Socket
Services and not just left over in the register from prior client activity.

9.6.7.1.6 GetBridgeWindow

Entry:

 [AH] GET_BWINDOW

[AL] Adapter

[BH] Window

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BL] Socket

[ECX] Size (Bytes)

[DH] State Bit 0 WS_IO

Bit 1 WS_ENABLED

Bit 3 WS_PREFETCH

Bits 3&4 WS_CACHABLE

Bits 2, 5..7 Reserved (reset to zero)

[EDI] Base (Bytes)

Note: If a bridge window is cachable, it is by definition prefetchable. For that
reason, cachable bridge windows return both Bits 3 and 4 of the State field set
to one.

SOCKET SERVICES BINDINGS

106 ©2001 PCMCIA/JEITA

9.6.7.1.7 GetEDC

Entry:

[AH] GET_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BL] Socket

[DH] State Bit 0 = EC_UNI

Bit 1 = EC_WRITE

[DL] Type Bit 0 = ET_CHECK8

Bit 1 = ET_SDLC16

Bit 2 = ET_SDLC32

9.6.7.1.8 GetPage

Entry:

[AH] GET_PAGE

[AL] Adapter

[BH] Window

[BL] Page

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[DL] State Bit 0 = PS_ATTRIBUTE

Bit 1 = PS_ENABLED

Bit 2 = PS_WP

[DI] Offset (4 KByte units)

9.6.7.1.9 GetSetPriorHandler

Entry:

[AH] PRIOR_HANDLER

[AL] Adapter

[BL] Mode 0 = Get

1 = Set

[CX]:[DX] pHandler

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[CX]:[DX] pHandler

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 107

If this Socket Services handler is the first installed in the INT 1AH chain, the values returned by a Get
request should be the entry point of the Time of Day handler.

One reason a SetPriorHandler request would fail is the Socket Services it is addressing is in ROM
BIOS as the first extension to the Time of Day handler. In this case, the vector to the Time of Day
handler is probably hard-coded into the ROM BIOS and not in RAM prohibiting it from being
updated. This should not cause any difficulty to a client wishing to revise the chain, since this Socket
Services may be bypassed by registering the values returned from a GetPriorHandler request to this
Socket Services with a replacement Socket Services implementation.

9.6.7.1.10 GetSetSSAddr

Entry:

[AH] SS_ADDR

[AL] Adapter

[BH] Mode 00 = Real Mode

01 = 16:16 Protect

02 = 16:32 Protect

03 = 00:32 Protect

[BL] Subfunc

[CX] NumAddData

[ES]:[(E)DI] pBuffer

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[CX] NumAddData

[ES]:[(E)DI] pBuffer

The entry points returned by this service must receive control from a CALL instruction. The real,
16:16 and 16:32 entry points require a FAR CALL instruction to be used. The 00:32 entry point
requires a NEAR CALL. When using an entry point returned by this service for any mode other than
real, the client must establish a pointer to the main data area in [DS]:[(E)SI].

Note: Subfunc 02 is invalid, if the desired processor mode is 00 indicating real-
mode.

WARNING:

Any [CS] selector created should be readable in addition to being executable to
allow a Socket Services implementation to reference constant data which may
reside in a ROM-ed code segment. The client must also insure that Socket
Services has the appropriate privileges to allow I/O port access.

Mode specific comments have been added to the buffer entry descriptions in the tables below:

SOCKET SERVICES BINDINGS

108 ©2001 PCMCIA/JEITA

When Subfunc is zero (0):

Offset Size Description

00H Double Word 32-bit linear base address of code segment in system memory

04H Double Word Limit of code segment—Must be less than 64K in real and 16:16 protect-mode

08H Double Word Entry point offset—Must be less than 64K in real and 16:16 protect-mode

0CH Double Word 32-bit linear base address of main data segment in system memory—Ignored for
0:32 (flat) protect-mode

10H Double Word Limit of data segment—Must be less than 64K in real and 16:16 protect-mode

14H Double Word Data area offset—Only used for 32-bit protect-modes

When Subfunc is one (1):

Offset Size Description

00H Double Word 32-bit linear base address of additional data segment—Ignored for 0:32 (flat)
protect-mode

04H Double Word Limit of data segment—Must be less than 64K in real and 16:16 protect-mode

08H Double Word Data area offset—Only used for 32-bit protect-modes

When Subfunc is two (2):

Offset Size Description

00H Double Word 32-bit offset—Ignored for 16:16 protect-modes (which assumes zero)

04H Double Word Selector—Ignored for 0:32 (flat) protect-mode

08H Double Word Reserved

When Subfunc is four (4):

Offset Size Description

00H Double Word 32-bit linear base address of code segment in system memory

04H Double Word Limit of code segment—Must be less than 64K in real and 16:16 protect-mode

08H Double Word Entry point offset (entry point that utilizes the packet interface)—Must be less than
64K in real and 16:16 protect-mode

0CH Double Word 32-bit linear base address of main data segment in system memory—Ignored for
0:32 (flat) protect-mode

10H Double Word Limit of data segment—Must be less than 64K in real and 16:16 protect-mode

14H Double Word Data area offset—Only used for 32-bit protect-modes

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 109

9.6.7.1.11 GetSocket

Entry:

[AH] GET_SOCKET

[AL] Adapter

[BL] Socket

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BH] SCIntMask (Uses the same bit masks as InquireSocket)

[CH] Lower Nibble = VccLevel

Upper Nibble = Vcontrol
Bit 4 = VCTL_CISREAD
Bit 5 = VCTL_OVERRIDE
Bit 6··7 = Voltage Sense Signaling (read-only)

0 = VCTL_5V
1 = VCTL_33V
2 = VCTL_XXV
3 = Reserved (not used)

[CL] VppLevels Lower Nibble = VPP2

Upper Nibble = VPP1

[DH] State (Uses same bit masks as SCIntMask)

[DL] CtlInd (Uses same bit masks as InquireSocket)

[DI] Low Byte = IREQRouting

High Byte = IFType

Bit 0··4 IRQ level
Bit 5 RESERVED
Bit 6 IRQ_HIGH
Bit 7 IRQ_ENABLE
Bit 8··9 Interface type

0 = IF_CARDBUS,
1 = IF_MEMORY
2 = IF_IO
3 = IF_CUSTOM

Bits 10··11 DREQ
0 = No DMA
1 = SPKR#
2 = IOIS16#
3 = INPACK#

Bits 12··15 DMA Channel (0··15)

[BP] IFIndex Index of custom interface when IFType = IF_CUSTOM

SOCKET SERVICES BINDINGS

110 ©2001 PCMCIA/JEITA

9.6.7.1.12 GetSSInfo

Entry:

[AH] GET_SS_INFO

[AL] Adapter

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[AL] Zero (0) Insures backward compatibility with Release 1.01

[BX] Compliance

[CH] NumAdapters

[CL] FirstAdapter

9.6.7.1.13 GetStatus

Entry:

[AH] GET_STATUS

[AL] Adapter

[BL] Socket

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BH] CardState (same bit-masks as GetSocket SCIntMask)

[DH] SocketState (same as GetSocket)

[DL] CtlInd (same as GetSocket)

[DI] High Byte = IFType

Low Byte = IREQRouting

(same as GetSocket)

9.6.7.1.14 GetVendorInfo

Entry:

[AH] GET_VENDOR_INFO

[AL] Adapter

[BL] Type

[ES]:[(E)DI] pBuffer

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[ES]:[(E)DI] pBuffer

[DX] Release

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 111

9.6.7.1.15 GetWindow

Entry:

[AH] GET_WINDOW

[AL] Adapter

[BH] Window

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BL] Socket and parameter width

Bit 0··3 = Socket Number
Bit 4 = Size and Base width

0 = 16 bits
1 = 32 bits

[(E)CX] Size If bit 4 of [BL] is reset, I/O windows are expressed in bytes, memory
windows are expressed in 4 KByte units and [CX] is used.

If bit 4 of [BL] is set, both I/O and memory windows are expressed in
bytes and [ECX] is used.

[DH] State Bit 0 = WS_IO
Bit 1 = WS_ENABLED
Bit 2 = WS_16BIT
Bit 3 = WS_PAGED (Memory window) or WS_EISA (I/O window)
Bit 4 = WS_CENABLE (I/O window with WS_EISA set)

[DL] Speed

[(E)DI] Base If bit 4 of [BL] is reset, I/O windows are expressed in bytes, memory
windows are expressed in 4 KByte units and [DI] is used.

If bit 4 of [BL] is set, both I/O and memory windows are expressed in
bytes and [EDI] is used.

9.6.7.1.16 InquireAdapter

Entry:

[AH] INQ_ADAPTER

[AL] Adapter

[ES]:[(E)DI] pBuffer for adapter characteristics and power levels

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BH] NumWindows

[BL] NumSockets

[CX] NumEDCs

[DX] NumBridgeWindows

[ES]:[(E)DI] pBuffer with adapter characteristics and power management tables

SOCKET SERVICES BINDINGS

112 ©2001 PCMCIA/JEITA

9.6.7.1.17 InquireBridgeWindow

Entry:

[AH] INQ_BWINDOW

[AL] Adapter

[BH] Window

[ES]:[(E)DI] pBuffer for window characteristics

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BL] WndCaps Bit 0 = WC_MEMORY
Bit 1 = Reserved (reset to zero)
Bit 2 = WC_IO
Bit 3··7 = Reserved (reset to zero)

[CX] Sockets Bit 0··15 = Bit-mask
Bit 0 is Socket 0
Bit 1 is Socket 1
etc.

[ES]:[(E)DI] pBuffer with window characteristics

Note: All BASE and SIZE values in the BIOWINTBL and BMEMWINTBL
structures returned by this service are 32-bits wide. That is, the BASE32 and
WSIZE32 data types are used for BASE and SIZE values.

9.6.7.1.18 InquireEDC

Entry:

[AH] INQ_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[CX] Sockets Bit 0··15 = Bit-mask
Bit 0 is Socket 0
Bit 1 is Socket 1
etc.

[DH] Caps Bit 0 = EC_UNI
Bit 1 = EC_BI
Bit 2 = EC_REGISTER
Bit 3 = EC_MEMORY
Bit 4 = EC_PAUSABLE

[DL] Types Bit 0 = ET_CHECK8
Bit 1 = ET_SDLC16
Bit 2 = ET_SDLC32

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 113

9.6.7.1.19 InquireSocket

Entry:

[AH] INQ_SOCKET

[AL] Adapter

[BL] Socket

[ES]:[(E)DI] pBuffer for socket characteristics

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BH] SCIntCaps Bit 0 = SBM_WP
Bit 1 = SBM_LOCKED
Bit 2 = SBM_EJECT
Bit 3 = SBM_INSERT
Bit 4 = SBM_BVD1
Bit 5 = SBM_BVD2
Bit 6 = SBM_RDYBSY
Bit 7 = SBM_CD

[DH] SCRptCaps (same as SCIntCaps)

[DL] CtlIndCaps Bit 0 = SBM_WP
Bit 1 = SBM_LOCKED
Bit 2 = SBM_EJECT
Bit 3 = SBM_INSERT
Bit 4 = SBM_LOCK
Bit 5 = SBM_BATT
Bit 6 = SBM_BUSY
Bit 7 = SBM_XIP

[ES]:[(E)DI] pBuffer with socket characteristics

9.6.7.1.20 InquireWindow

Entry:

[AH] INQ_WINDOW

[AL] Adapter

[BH] Window if [BH] is 0FFH then Window is passed in [DH] and the window
characteristics returned in the Buffer use 32-bit wide values for BASE and
SIZE

[DH] Window if [BH] is 0FFH, otherwise undefined

[ES]:[(E)DI] pBuffer for window characteristics

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[BL] WndCaps Bit 0 = WC_COMMON
Bit 1 = WC_ATTRIBUTE
Bit 2 = WC_IO
Bit 7 = WC_WAIT

[CX] Sockets Bit 0··15 = Bit-mask
Bit 0 is Socket 0
Bit 1 is Socket 1
etc.

[ES]:[(E)DI] pBuffer with window characteristics

SOCKET SERVICES BINDINGS

114 ©2001 PCMCIA/JEITA

Note: The data types used for the BASE and SIZE values in the IOWINTBL and
MEMWINTBL structures returned by this service vary depending on the
value passed in the [BH] register.

If [BH] is not FFH, the BASE and SIZE values are 16-bits wide using the
BASE16 and WSIZE16 data types. When [BH] is not FFH, BASE and SIZE
values in the IOWINTBL structure are expressed in bytes and BASE and
SIZE values in the MEMWINTBL structure are expressed in 4 KByte units.

If [BH] is FFH, the BASE and SIZE values are 32-bits wide using the BASE32
and WSIZE32 data types. When [BH] is FFH, BASE and SIZE values in both
the IOWINTBL and MEMWINTBL structures are expressed in bytes.

This encoding allows backward compatibility with prior releases of the
Socket Services binding for this service that only used 16-bit values for BASE
and SIZE.

9.6.7.1.21 PauseEDC

Entry:

[AH] PAUSE_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.22 ReadEDC

Entry:

[AH] READ_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

[DX] Value

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 115

9.6.7.1.23 ResetSocket

Entry:

[AH] RESET_SOCKET

[AL] Adapter

[BL] Socket

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.24 ResumeEDC

Entry:

[AH] RESUME_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.25 SetAdapter

Entry:

[AH] SET_ADAPTER

[AL] Adapter

[DH] State (same as GetAdapter)

[DI] SCRouting (same as GetAdapter)

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

SOCKET SERVICES BINDINGS

116 ©2001 PCMCIA/JEITA

9.6.7.1.26 SetBridgeWindow

Entry:

[AH] GET_BWINDOW

[AL] Adapter

[BH] Window

[BL] Socket

[ECX] Size (Bytes)

[DH] State (Same as GetBridgeWindow)

[EDI] Base (Bytes)

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.27 SetEDC

Entry:

[AH] SET_EDC

[AL] Adapter

[BH] EDC

[BL] Socket

[DH] State (same as GetEDC)

[DL] Type (same as GetEDC)

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.28 SetPage

Entry:

[AH] SET_PAGE

[AL] Adapter

[BH] Window

[BL] Page

[DH] State (same as GetPage)

[DI] Offset (4 KByte units)

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 117

9.6.7.1.29 SetSocket

Entry:

[AH] SET_SOCKET

[AL] Adapter

[BL] Socket

[BH] SCIntMask (same as GetSocket)

[CH] Vcontrol (same as GetSocket)

[CL] VppLevels (same as GetSocket

[DH] State (same as GetSocket)

[DL] CtlInd (same as GetSocket)

[DI] High Byte = IFType
Low Byte = IREQRouting

(same as GetSocket), plus:

Bit 5 IRQ_INVALID

[BP] IFIndex Index of custom interface when IFType = IF_CUSTOM

(same as GetSocket)

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.30 SetWindow

Entry:

[AH] SET_WINDOW

[AL] Adapter

[BH] Window

[BL] Socket

[CX] Size (same as GetWindow)

[DH] State (same as GetWindow)

[DL] Speed

[DI] Base (same as GetWindow)

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

SOCKET SERVICES BINDINGS

118 ©2001 PCMCIA/JEITA

9.6.7.1.31 StartEDC

Entry:

[AH] START_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.32 StopEDC

Entry:

[AH] STOP_EDC

[AL] Adapter

[BH] EDC

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

9.6.7.1.33 VendorSpecific

Entry:

 [AH] VEND_SPECIFIC

[AL] Adapter

All other registers are vendor specific.

Exit:

[CF] Status set = error

reset = success

[AH] RETCODE

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 119

9.6.7.2 Packet Usage Bindings

The following sections describe how the individual services are bound when using the packet
binding. Specifically, the packets are used as described in 9.6.5.2 Packet Interface Usage and these
sections describe only extensions or differences. When a parameter or field is different for entry and
exit then the syntax of 'entry/exit' is used for differentiation in the desciption.

9.6.7.2.1 AccessConfigurationSpace

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket

21 1 Function (0..7 only)

22 2 Reserved

24 4 Data

28 1 Location (on a four byte boundary)

29 1 Action (Read = 00h, Write = 01h)

30 2 Reserved

32 1 Adapter

33 1 ACCESS_CFG_SPACE and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

120 ©2001 PCMCIA/JEITA

9.6.7.2.2 AcknowledgeInterrupt

Offset Size Description and Usage

0 2 Segment or Selector of Buffer

2 2 Segment or Selector of Data Pointer

4 4 Offset of Buffer

8 4 Offset of Data Pointer

12 4 Reserved

16 4 Reserved

20 1 Page or Socket

21 1 Window

22 2 Reserved

24 4 Attributes

28 4 Reserved / Sockets

32 1 Adapter

33 1 ACK_INTERRUPT and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 121

9.6.7.2.3 GetAccessOffsets

Offset Size Description and Usage (RE: x86 register name)

0 2 Segment or Selector of pBuffer (ES)

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 Mode
00 = Real Mode

01 = 16:16 Protect

02 = 16:32 Protect

03 = 00:32 Protect

22 2 Reserved

24 4 Reserved

28 4 NumDesired

32 1 Adapter

33 1 ACCESS_OFFSETS and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

All modes return 16-bit offsets. These offsets need to be combined with information returned by
GetSSAddr describing the location of the code segment. Offsets returned by this service are relative
to the code segment.

For real-mode, 16:16 and 16:32, the routines at these offsets use FAR RET instructions to return to the
caller requiring they be invoked with a FAR CALL instruction. In 0:32 (flat) protect-mode, the
routines at the returned offsets use NEAR RET instructions and need to be invoked with a NEAR
CALL instruction.

SOCKET SERVICES BINDINGS

122 ©2001 PCMCIA/JEITA

9.6.7.2.4 GetAdapter

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved / SCRouting
Bit 0⋅⋅4 = IRQ level

Bit 6 = IRQ_HIGH

Bit 7 = IRQ_ENABLED

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 Reserved

22 2 Reserved

24 1 Reserved

25 1 Reserved / State:
Bit 0 = AS_POWERDOWN

Bit 1 = AS_MAINTAIN

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 GET_ADAPTER and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 123

9.6.7.2.5 GetAdapterCount

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 Reserved

22 2 Reserved

24 4 Reserved

28 4 Reserved / Signature

32 1 Reserved / TotalAdapters (if Status bit 0 reset then RETCODE=SUCCESS and Signature
is ’SS’)

33 1 GET_ADP_CNT and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

Note: This service is used to determine if a Socket Services handler is installed in
the host system. The handler may share the Socket Services interrupt vector
with other, unrelated handlers. There is no guarantee these other, unrelated
handlers will properly reject a Socket Services GetAdapterCount request.
The client should confirm Signature contains 'SS' before using
TotalAdapters. It is suggested the client set Signature to a value other than
'SS' before invoking this service to insure the return value is from Socket
Services and not just left over in the register from prior client activity.

SOCKET SERVICES BINDINGS

124 ©2001 PCMCIA/JEITA

9.6.7.2.6 GetBridgeWindow

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved / Base (Bytes)

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved / Socket

21 1 Reserved / Window

22 2 Reserved

24 1 Reserved

25 1 Reserved / State:
Bit 0 WS_IO

Bit 1 WS_ENABLED

Bit 3 WS_PREFETCH

Bits 3&4 WS_CACHABLE

Bits 2, 5..7 Reserved (reset to zero)

26 2 Reserved

28 4 Reserved / Size

32 1 Adapter

33 1 GET_BWINDOW and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

Note: If a bridge window is cachable, it is by definition prefetchable. For that
reason, cachable bridge windows return both Bits 3 and 4 of the State field set
to one.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 125

9.6.7.2.7 GetEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved / Socket

21 1 EDC

22 2 Reserved

24 1 Reserved / Type:

Bit 0 = ET_CHECK8

Bit 1 = ET_SDLC16

Bit 2 = ET_SDLC32

25 1 Reserved / State:

Bit 0 = EC_UNI

Bit 1 = EC_WRITE

24 4 Reserved

28 4 Reserved

32 1 Adapter

33 1 GET_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

126 ©2001 PCMCIA/JEITA

9.6.7.2.8 GetPage

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved / Offset

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Page

21 1 Window

22 2 Reserved

24 1 Reserved / State:
Bit 0 = PS_ATTRIBUTE

Bit 1 = PS_ENABLED

Bit 2 = PS_WP

25 1 Reserved

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 GET_PAGE and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 127

9.6.7.2.9 GetSetPriorHandler

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Mode:

0 = Get

1 = Set

21 1 Reserved

22 2 Reserved

24 8 pHandler

32 1 Adapter

33 1 PRIOR_HANDLER and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

If this Socket Services handler is the first installed in the INT 1AH chain, the values returned by a Get
request should be the entry point of the Time of Day handler.

One reason a SetPriorHandler request would fail is the Socket Services it is addressing is in ROM
BIOS as the first extension to the Time of Day handler. In this case, the vector to the Time of Day
handler is probably hard-coded into the ROM BIOS and not in RAM prohibiting it from being
updated. This should not cause any difficulty to a client wishing to revise the chain, since this Socket
Services may be bypassed by registering the values returned from a GetPriorHandler request to this
Socket Services with a replacement Socket Services implementation.

SOCKET SERVICES BINDINGS

128 ©2001 PCMCIA/JEITA

9.6.7.2.10 GetSetSSAddr

Offset Size Description and Usage

0 2 Segment or Selector of pBuffer

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Subfunc

21 1 Mode:
00 = Real Mode

01 = 16:16 Protect

02 = 16:32 Protect

03 = 00:32 Protect

22 2 Reserved

24 4 Reserved

28 4 NumAddData

32 1 Adapter

33 1 SS_ADDR and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

The entry points returned by this service must receive control from a CALL instruction. The real,
16:16 and 16:32 entry points require a FAR CALL instruction to be used. The 00:32 entry point
requires a NEAR CALL. When using an entry point returned by this service for any mode other than
real, the client must establish a pointer to the main data area in offsets 2 and 8.

Note: Subfunc 02 is invalid, if the desired processor mode is 00 indicating real-
mode.

WARNING:

Any Code Segment selector created should be readable in addition to being
executable to allow a Socket Services implementation to reference constant data
which may reside in a ROM-ed code segment. The client must also insure that
Socket Services has the appropriate privileges to allow I/O port access.

Mode specific comments have been added to the buffer entry descriptions in the tables below:

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 129

When Subfunc is zero (0):

Offset Size Description

00H Double Word 32-bit linear base address of code segment in system memory

04H Double Word Limit of code segment—Must be less than 64K in real and 16:16 protect-mode

08H Double Word Entry point offset—Must be less than 64K in real and 16:16 protect-mode

0CH Double Word 32-bit linear base address of main data segment in system memory—Ignored for
0:32 (flat) protect-mode

10H Double Word Limit of data segment—Must be less than 64K in real and 16:16 protect-mode

14H Double Word Data area offset—Only used for 32-bit protect-modes

When Subfunc is one (1):

Offset Size Description

00H Double Word 32-bit linear base address of additional data segment—Ignored for 0:32 (flat)
protect-mode

04H Double Word Limit of data segment—Must be less than 64K in real and 16:16 protect-mode

08H Double Word Data area offset—Only used for 32-bit protect-modes

When Subfunc is two (2):

Offset Size Description

00H Double Word 32-bit offset—Ignored for 16:16 protect-modes (which assumes zero)

04H Double Word Selector—Ignored for 0:32 (flat) protect-mode

08H Double Word Reserved

SOCKET SERVICES BINDINGS

130 ©2001 PCMCIA/JEITA

9.6.7.2.11 GetSocket

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 2 Reserved / Low Byte = IREQRouting

High Byte = IFType

Bit 0··4 IRQ level
Bit 5 RESERVED
Bit 6 IRQ_HIGH
Bit 7 IRQ_ENABLE
Bit 8··9 Interface type

0 = IF_CARDBUS,
1 = IF_MEMORY
2 = IF_IO
3 = IF_CUSTOM

Bits 10··11 DREQ
0 = No DMA
1 = SPKR#
2 = IOIS16#
3 = INPACK#

Bits 12··15 DMA Channel (0··15)

6 2 Reserved

8 4 Reserved

12 4 Reserved / IFIndex (Index of custom interface when IFType = IF_CUSTOM)

16 4 Reserved

20 1 Socket

21 1 Reserved / SCIntMask (Uses the same bit masks as InquireSocket)

22 2 Reserved

24 1 Reserved / CtlInd (Uses same bit masks as InquireSocket)

25 1 Reserved / State (Uses same bit masks as InquireSocket)

26 2 Reserved

28 1 Reserved / Vpp Levels:

Lower Nibble = VPP2

Upper Nibble = VPP1

29 1 Reserved / Lower Nibble = VccLevel

Upper Nibble = Vcontrol
Bit 4 = VCTL_CISREAD
Bit 5 = VCTL_OVERRIDE
Bit 6··7 = Voltage Sense Signaling (read-only)

0 = VCTL_5V
1 = VCTL_33V
2 = VCTL_XXV
3 = Reserved (not used)

30 2 Reserved

32 1 Adapter

33 1 GET_SOCKET and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 131

9.6.7.2.12 GetSSInfo

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 2 Reserved / Compliance

22 2 Reserved

24 4 Reserved

28 1 Reserved / FirstAdapter

29 1 Reserved / NumAdapters

30 2 Reserved

32 1 Adapter / Zero (0) (will be zero on return for compatibility)

33 1 GET_SS_INFO and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

132 ©2001 PCMCIA/JEITA

9.6.7.2.13 GetStatus

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 2 Reserved / Interface and IREQ Routing

High Byte = IFType

Low Byte = IREQRouting

(same as GetSocket)

6 2 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket

21 1 Reserved / CardState (same bit mask as GetSocket SCIntMask)

22 2 Reserved

24 1 Reserved / CtlInd (Same as GetSocket)

25 1 Reserved / SocketState (same as GetSocket)

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 GET_STATUS and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 133

9.6.7.2.14 GetVendorInfo

Offset Size Description and Usage

0 2 Segment or Selector of pBuffer

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Type

21 1 Reserved

22 2 Reserved

24 2 Reserved / Release

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 GET_VENDOR_INFO and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

134 ©2001 PCMCIA/JEITA

9.6.7.2.15 GetWindow

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved / Base: If bit 4 of the Socket field (offset 20) is reset, I/O windows are
expressed in bytes, memory windows are expressed in 4 Kbyte units and only the low 16-
bits are used for Base.

If bit 4 of the Socket field (offset 20) is set, both I/O and memory windows are expressed
in bytes and all 32-bits of Base is used.

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved / Socket and parameter width

Bit 0··3 = Socket Number
Bit 4 = Size and Base width

0 = 16 bits
1 = 32 bits

21 1 Window

22 2 Reserved

24 1 Reserved / Speed

25 1 Reserved / State:

Bit 0 = WS_IO
Bit 1 = WS_ENABLED
Bit 2 = WS_16BIT
Bit 3 = WS_PAGED (Memory window) or WS_EISA (I/O window)
Bit 4 = WS_CENABLE (I/O window with WS_EISA set)

24 2 Reserved

28 4 Reserved / Size: If bit 4 of the Socket field (offset 20) is reset, I/O windows are expressed
in bytes, memory windows are expressed in 4 Kbyte units and only 16 bits is used for
Size.

If bit 4 of the Socket field (offset 20) is set, both I/O and memory windows are expressed
in bytes and 32 bits are used for Size.

32 1 Adapter

33 1 GET_WINDOW and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 135

9.6.7.2.16 InquireAdapter

Offset Size Description and Usage

0 2 Segment or Selector of pBuffer

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved / NumSockets

21 1 Reserved / NumWindows

22 2 Reserved

24 4 Reserved / NumBridgeWindows

28 4 Reserved / NumEDCs

32 1 Adapter

33 1 INQ_ADAPTER and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

136 ©2001 PCMCIA/JEITA

9.6.7.2.17 InquireBridgeWindow

Offset Size Description and Usage

0 2 Segment or Selector of pBuffer

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved / WndCaps:

Bit 0 = WC_MEMORY
Bit 1 = Reserved (reset to zero)
Bit 2 = WC_IO
Bit 3··7 = Reserved (reset to zero)

21 1 Window

22 2 Reserved

24 4 Reserved

28 4 Reserved / Sockets:

Bit 0··15 = Bit-mask
Bit 0 is Socket 0
Bit 1 is Socket 1
etc.

32 1 Adapter

33 1 INQ_BWINDOW and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

Note: All BASE and SIZE values in the BIOWINTBL and BMEMWINTBL
structures returned by this service are 32-bits wide. That is, the BASE32 and
WSIZE32 data types are used for BASE and SIZE values.

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 137

9.6.7.2.18 InquireEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 EDC

22 2 Reserved

24 1 Reserved / Types:
Bit 0 = ET_CHECK8
Bit 1 = ET_SDLC16
Bit 2 = ET_SDLC32

25 1 Reserved / Caps:
Bit 0 = EC_UNI
Bit 1 = EC_BI
Bit 2 = EC_REGISTER
Bit 3 = EC_MEMORY
Bit 4 = EC_PAUSABLE

24 4 Reserved

28 4 Reserved / Sockets: Bit Mask

32 1 Adapter

33 1 INQ_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

138 ©2001 PCMCIA/JEITA

9.6.7.2.19 InquireSocket

Offset Size Description and Usage

0 2 Segment or Selector of pBuffer

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket

21 1 Reserved / SCIntCaps:
Bit 0 = SBM_WP
Bit 1 = SBM_LOCKED
Bit 2 = SBM_EJECT
Bit 3 = SBM_INSERT
Bit 4 = SBM_BVD1
Bit 5 = SBM_BVD2
Bit 6 = SBM_RDYBSY
Bit 7 = SBM_CD

22 2 Reserved

24 1 Reserved / CtlIndCaps:
Bit 0 = SBM_WP
Bit 1 = SBM_LOCKED
Bit 2 = SBM_EJECT
Bit 3 = SBM_INSERT
Bit 4 = SBM_LOCK
Bit 5 = SBM_BATT
Bit 6 = SBM_BUSY
Bit 7 = SBM_XIP

25 1 Reserved / SCRptCaps (same as SCIntCaps)

24 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 INQ_SOCKET and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 139

9.6.7.2.20 InquireWindow

Offset Size Description and Usage

0 2 Segment or Selector of pBuffer

2 2 Reserved

4 4 Offset of pBuffer

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved / WndCaps:
Bit 0 = WC_COMMON
Bit 1 = WC_ATTRIBUTE
Bit 2 = WC_IO
Bit 7 = WC_WAIT

21 1 Window: if this field value is 0FFH then Window is passed in offset 25 and the window
characteristics returned in the Buffer use 32-bit wide values for BASE and SIZE

22 2 Reserved

24 1 Reserved

25 1 Window If offset 21 is 0FFH else Reserved

24 2 Reserved

28 4 Reserved / Sockets:
Bit 0··15 = Bit-mask

Bit 0 is Socket 0
Bit 1 is Socket 1
etc.

32 1 Adapter

33 1 INQ_WINDOW and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

Note: The data types used for the BASE and SIZE values in the IOWINTBL and
MEMWINTBL structures returned by this service vary depending on the
value passed in the Window (offset 21) field.

If the Window (offset 21) field is not FFH, the BASE and SIZE values are 16-
bits wide using the BASE16 and WSIZE16 data types. When the Window
(offset 21) field is not FFH, BASE and SIZE values in the IOWINTBL structure
are expressed in bytes and BASE and SIZE values in the MEMWINTBL
structure are expressed in 4 KByte units.

If the Window (offset 21) field is FFH, the BASE and SIZE values are 32-bits
wide using the BASE32 and WSIZE32 data types. When the Window (offset
21) field is FFH, BASE and SIZE values in both the IOWINTBL and
MEMWINTBL structures are expressed in bytes.

This encoding allows backward compatibility with prior releases of the
Socket Services for this service that only used 16-bit values for BASE and
SIZE.

SOCKET SERVICES BINDINGS

140 ©2001 PCMCIA/JEITA

9.6.7.2.21 PauseEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 EDC

22 2 Reserved

24 4 Reserved

28 4 Reserved

32 1 Adapter

33 1 PAUSE_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

9.6.7.2.22 ReadEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 EDC

22 2 Reserved

24 4 Reserved / Value

28 4 Reserved

32 1 Adapter

33 1 READ_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 141

9.6.7.2.23 ResetSocket

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket

21 1 Reserved

22 2 Reserved

24 4 Reserved

28 4 Reserved

32 1 Adapter

33 1 RESET_SOCKET and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

9.6.7.2.24 ResumeEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 EDC

22 2 Reserved

24 4 Value

28 4 Reserved

32 1 Adapter

33 1 RESUME_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

142 ©2001 PCMCIA/JEITA

9.6.7.2.25 SetAdapter

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 SCRouting (same as GetAdapter)

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 Reserved

22 2 Reserved

24 1 State (same as in GetAdapter)

25 1 Reserved

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 SET_ADAPTER and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 143

9.6.7.2.26 SetBridgeWindow

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Base

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket

21 1 Window

22 2 Reserved

24 1 State (same as in GetBridgeWindow)

25 1 Reserved

26 2 Reserved

28 4 Size (bytes)

32 1 Adapter

33 1 SET_BWINDOW and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

144 ©2001 PCMCIA/JEITA

9.6.7.2.27 SetEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket

21 1 Reserved

22 2 Reserved

24 1 Type (same as in GetEDC)

25 1 State (same as in GetEDC)

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 SET_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 145

9.6.7.2.28 SetPage

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Offset

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Page

21 1 Window

22 2 Reserved

24 1 State: (same as in GetPage)

25 1 Reserved

26 2 Reserved

28 4 Reserved

32 1 Adapter

33 1 SET_PAGE and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

146 ©2001 PCMCIA/JEITA

9.6.7.2.29 SetSocket

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 2 High Byte = IFType
Low Byte = IREQRouting

(same as GetSocket), plus:

Bit 5 IRQ_INVALID

6 2 Reserved

8 4 Reserved

12 4 IFIndex (same as in GetSocket)

16 4 Reserved

20 1 Socket

21 1 SCIntMask (same as in GetSocket)

22 2 Reserved

24 1 CtlInd (same as in GetSocket)

25 1 State (same as in GetSocket)

26 2 Reserved

28 1 VppLevels: (same as in GetSocket)

29 1 VControl (same as in GetSocket)

30 2 Reserved

32 1 Adapter

33 1 SET_SOCKET and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 147

9.6.7.2.30 SetWindow

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Base (same as in GetWindow)

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Socket (same as in GetWindow)

21 1 Window

22 2 Reserved

24 1 Speed

25 1 State (same as in GetWindow)

24 2 Reserved

28 4 Size (same as in GetWindow)

32 1 Adapter

33 1 SET_WINDOW and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

9.6.7.2.31 StartEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 EDC

22 2 Reserved

24 4 Reserved

28 4 Reserved

32 1 Adapter

33 1 START_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

SOCKET SERVICES BINDINGS

148 ©2001 PCMCIA/JEITA

9.6.7.2.32 StopEDC

Offset Size Description and Usage

0 2 Reserved

2 2 Reserved

4 4 Reserved

8 4 Reserved

12 4 Reserved

16 4 Reserved

20 1 Reserved

21 1 EDC

22 2 Reserved

24 4 Reserved

28 4 Reserved

32 1 Adapter

33 1 STOP_EDC and RETCODE

34 2 Reserved

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 0 = Additional Arguments Buffer Length

44 0 Additional Arguments Buffer

9.6.7.2.33 VendorSpecific

Offset Size Description and Usage

0 2 Vendor Specific

2 2 Vendor Specific

4 4 Vendor Specific

8 4 Vendor Specific

12 4 Reserved

16 4 Reserved

20 1 Vendor Specific

21 1 Vendor Specific

22 2 Vendor Specific

24 4 Vendor Specific

28 4 Vendor Specific

32 1 Adapter

33 1 VEND_SPECIFIC and RETCODE

34 2 Vendor Specific

36 2 Reserved

38 2 Reserved

40 2 Status - bit 0 only, all others reserved

42 2 n = Additional Arguments Buffer Length (vendor specific)

44 n Additional Arguments Buffer - Vendor Specific

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 149

9.6.8 Assembly Language Definitions
This section contains suggested assembly language definitions for values required by clients of the
Socket Services interface.

; The following definitions are formatted for Microsoft MASM 6.0.

; ----- Service definitions

GET_ADP_CNT EQU 80H
; 81H and 82H reserved for historical purposes

GET_SS_INFO EQU 83H
INQ_ADAPTER EQU 84H
GET_ADAPTER EQU 85H
SET_ADAPTER EQU 86H
INQ_WINDOW EQU 87H
GET_WINDOW EQU 88H
SET_WINDOW EQU 89H
GET_PAGE EQU 8AH
SET_PAGE EQU 8BH
INQ_SOCKET EQU 8CH
GET_SOCKET EQU 8DH
SET_SOCKET EQU 8EH
GET_STATUS EQU 8FH
RESET_SOCKET EQU 90H

; 91H thru 94H reserved for historical purposes
INQ_EDC EQU 95H
GET_EDC EQU 96H
SET_EDC EQU 97H
START_EDC EQU 98H
PAUSE_EDC EQU 99H
RESUME_EDC EQU 9AH
STOP_EDC EQU 9BH
READ_EDC EQU 9CH
GET_VENDOR_INFO EQU 9DH
ACK_INTERRUPT EQU 9EH
PRIOR_HANDLER EQU 9FH
SS_ADDR EQU 0A0H
ACCESS_OFFSETS EQU 0A1H
ACCESS_CONFIG EQU 0A2H
INQ_BWINDOW EQU 0A3H
GET_BWINDOW EQU 0A4H
SET_BWINDOW EQU 0A5H

; A6H thru ADH are reserved for expansion
VEND_SPECIFIC EQU 0AEH
CARD_SERVICES EQU 0AFH
SS_INT EQU 1AH ; Socket Services Int vector

SOCKET SERVICES BINDINGS

150 ©2001 PCMCIA/JEITA

; ----- Return codes

SUCCESS EQU 00H
BAD_ADAPTER EQU 01H
BAD_ATTRIBUTE EQU 02H
BAD_BASE EQU 03H
BAD_EDC EQU 04H

; 05H reserved for historical purposes
BAD_IRQ EQU 06H
BAD_OFFSET EQU 07H
BAD_PAGE EQU 08H
READ_FAILURE EQU 09H
BAD_SIZE EQU 0AH
BAD_SOCKET EQU 0BH

; 0CH is reserved for historical purposes
BAD_TYPE EQU 0DH
BAD_VCC EQU 0EH
BAD_VPP EQU 0FH

; 10H is reserved for historical purposes
BAD_WINDOW EQU 11H
WRITE_FAILURE EQU 12H

; 13H is reserved for historical purposes
NO_CARD EQU 14H
BAD_SERVICE EQU 15H
BAD_MODE EQU 16H
BAD_SPEED EQU 17H
BUSY EQU 18H

; ----- Defined data types

ADAPTER TYPEDEF BYTE
BASE16 TYPEDEF WORD
BASE32 TYPEDEF DWORD
BCD TYPEDEF WORD
COUNT TYPEDEF BYTE
EDC TYPEDEF BYTE
FLAGS8 TYPEDEF BYTE
FLAGS16 TYPEDEF WORD
FLAGS32 TYPEDEF DWORD
IRQ TYPEDEF BYTE
COFFSET TYPEDEF WORD ; OFFSET is reserved by MASM 6.0
WPAGE TYPEDEF BYTE ; PAGE is reserved by MASM 6.0
PWRINDEX TYPEDEF BYTE
RETCODE TYPEDEF BYTE
SIGNATURE TYPEDEF WORD
WSIZE16 TYPEDEF WORD ; SIZE is reserved by MASM 6.0
WSIZE32 TYPEDEF DWORD
SOCKET TYPEDEF BYTE
SPEED TYPEDEF BYTE
WINDOW TYPEDEF BYTE
SKTBITS TYPEDEF WORD

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 151

; ----- Structures

PWRENTRY STRUCT ; Power level and valid signals
PowerLevel PWRINDEX ? ; as returned by InquireAdapter
ValidSignals FLAGS8 ?
PWRENTRY ENDS

ACHARTBL STRUCT ; Inquire Adapter
AdpCaps FLAGS16 ?
ActiveHi FLAGS32 ?
ActiveLo FLAGS32 ?
ACHARTBL ENDS

SCHARTBL STRUCT ; Inquire Socket
SktCaps FLAGS16 ?
ActiveHi FLAGS32 ?
ActiveLo FLAGS32 ?
DMAChannels FLAGS16 ?
wNumCustomIF WORD ?
dCustomIF DWORD ?
CHARTBL ENDS

MEMWINTBL STRUCT ; Inquire Window for Memory Windows
MemWndCaps FLAGS16 ? ; Window Capabilities Flags
FirstByte BASE ? ; System Address of First Byte
LastByte BASE ? ; System Address of Last Byte
MinSize WSIZE ? ; Minimum Window Size
MaxSize WSIZE ? ; Maximum Window Size
ReqGran WSIZE ? ; Size Granularity
ReqBase WSIZE ? ; Window Base Alignment requirement
ReqOffset WSIZE ? ; Alignment Requirement for offsets
Slowest SPEED ? ; Slowest Access Speed for Window
Fastest SPEED ? ; Fastest Access Speed for Window
MEMWINTBL ENDS

IOWINTBL STRUCT ; Inquire Window for IO Windows
IOWndCaps FLAGS16 ? ; Window Capabilities Flags
FirstByte BASE ? ; System Address of First Byte
LastByte BASE ? ; System Address of Last Byte
MinSize WSIZE ? ; Minimum Window Size
MaxSize WSIZE ? ; Maximum Window Size
ReqGran WSIZE ? ; Size Granularity
AddrLines COUNT ? ; Address Lines Decoded by Window
EISASlot FLAGS8 ? ; Upper 4 I/O Address lines for EISA
IOWINTBL ENDS

; ----- Valid power level bit-masks

VCC EQU 10000000B
VPP1 EQU 01000000B
VPP2 EQU 00100000B

SOCKET SERVICES BINDINGS

152 ©2001 PCMCIA/JEITA

; ----- Adapter capabilities bit-masks

AC_IND EQU 0000000000000001B
AC_PWR EQU 0000000000000010B
AC_DBW EQU 0000000000000100B
AC_CARDBUS EQU 0000000000001000B

; ----- Adapter state

AS_POWERDOWN EQU 00000001B
AS_MAINTAIN EQU 00000010B

; ----- Generic window capabilities bit-masks

WC_COMMON EQU 00000001B
WC_ATTRIBUTE EQU 00000010B
WC_IO EQU 00000100B
WC_WAIT EQU 10000000B

; ----- Generic bridge window capabilities bit-masks

WC_MEMORY EQU 00000001B

; ----- Bridge, Memory and I/O window capabilities bit-masks

WC_BASE EQU 0000000000000001B
WC_SIZE EQU 0000000000000010B
WC_WENABLE EQU 0000000000000100B
WC_8BIT EQU 0000000000001000B
WC_16BIT EQU 0000000000010000B
WC_BALIGN EQU 0000000000100000B
WC_POW2 EQU 0000000001000000B

WC_FETCHABLE EQU 0000000010000000B ; InquireBridgeWindow
WC_CACHABLE EQU 0000000100000000B ; InquireBridgeWindow

; ----- Memory window (page) capabilities only

WC_CALIGN EQU 0000000010000000B
WC_PAVAIL EQU 0000000100000000B
WC_PSHARED EQU 0000001000000000B
WC_PENABLE EQU 0000010000000000B
WC_WP EQU 0000100000000000B

; ----- I/O window capabilities only

WC_INPACK EQU 0000000010000000B
WC_EISA EQU 0000000100000000B
WC_CENABLE EQU 0000001000000000B

; ----- Generic window state

WS_IO EQU 00000001B
WS_ENABLED EQU 00000010B
WS_16BIT EQU 00000100B ; Memory and I/O only

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 153

; ----- Bridge window state

WS_PREFETCH EQU 00001000B
WS_CACAHBLE EQU 00011000B ; Includes WS_PREFETCH

; ----- Memory window state

WS_PAGED EQU 00001000B

; ----- I/O window state

WS_EISA EQU 00001000B
WS_CENABLE EQU 00010000B

; ----- Page state

PS_ATTRIBUTE EQU 00000001B
PS_ENABLED EQU 00000010B
PS_WP EQU 00000100B

; ----- IRQ level bit-masks (low word of 32-bit mask)

IRQ_0 EQU 0000000000000001B
IRQ_1 EQU 0000000000000010B
IRQ_2 EQU 0000000000000100B
IRQ_3 EQU 0000000000001000B
IRQ_4 EQU 0000000000010000B
IRQ_5 EQU 0000000000100000B
IRQ_6 EQU 0000000001000000B
IRQ_7 EQU 0000000010000000B
IRQ_8 EQU 0000000100000000B
IRQ_9 EQU 0000001000000000B
IRQ_10 EQU 0000010000000000B
IRQ_11 EQU 0000100000000000B
IRQ_12 EQU 0001000000000000B
IRQ_13 EQU 0010000000000000B
IRQ_14 EQU 0100000000000000B
IRQ_15 EQU 1000000000000000B

; ----- IRQ level bit-masks (high word of 32-bit mask)

IRQ_NMI EQU 0000000000000001B
IRQ_IO EQU 0000000000000010B
IRQ_BUSERR EQU 0000000000000100B

; ----- IRQ state bit-masks

IRQ_HIGH EQU 01000000B
IRQ_ENABLED EQU 10000000B

SOCKET SERVICES BINDINGS

154 ©2001 PCMCIA/JEITA

; ----- Socket bit-masks

SBM_WP EQU 00000001B
SBM_LOCKED EQU 00000010B
SBM_EJECT EQU 00000100B
SBM_INSERT EQU 00001000B
SBM_BVD1 EQU 00010000B
SBM_BVD2 EQU 00100000B
SBM_RDYBSY EQU 01000000B
SBM_CD EQU 10000000B

SBM_LOCK EQU 00010000B
SBM_BATT EQU 00100000B
SBM_BUSY EQU 01000000B
SBM_XIP EQU 10000000B

; ----- EDC definitions

EC_UNI EQU 00000001B
EC_BI EQU 00000010B
EC_REGISTER EQU 00000100B
EC_MEMORY EQU 00001000B
EC_PAUSABLE EQU 00010000B

EC_WRITE EQU 00000010B

ET_CHECK8 EQU 00000001B
ET_SDLC16 EQU 00000010B
ET_SDLC32 EQU 00000100B

; ----- Voltage Control values

VCTL_CISREAD EQU 00010000B
VCTL_OVERRIDE EQU 00100000B

VCTL_SENSE_MSK EQU 11000000b ; Used to isolate voltage sense
VCTL_50V EQU 00000000b
VCTL_33V EQU 01000000b
VCTL_XXV EQU 10000000b

; ----- Interface bit-masks

IF_TYPE_MASK EQU 00000011B ; Get/SetSocket
IF_CARDBUS EQU 00000000B ; GetSocket
IF_MEMORY EQU 00000001B ; Get/Inquire/SetSocket
IF_IO EQU 00000010B ; Get/Inquire/SetSocket
IF_CUSTOM EQU 00000011B ; Get/SetSocket

IF_CB EQU 00000100B ; InquireSocket
IF_DMA EQU 00001000B ; InquireSocket
IF_VSKEY EQU 00010000B ; InquireSocket
IF_33VCC EQU 00100000B ; InquireSocket
IF_XXVCC EQU 01000000B ; InquireSocket

SOCKET SERVICES SPECIFICATION

©2001 PCMCIA/JEITA 155

DREQ_MASK EQU 00001100B ; Get/SetSocket
DREQ_NONE EQU 00000000B ; Get/SetSocket
DREQ_SPKR EQU 00000100B ; Get/SetSocket
DREQ_IOIS16 EQU 00001000B ; Get/SetSocket
DREQ_INPACK EQU 00001100B ; Get/SetSocket

DMA_CHAN_MASK EQU 11110000B ; Get/SetSocket
DMA_CHAN0 EQU 00000000B ; Get/SetSocket
DMA_CHAN1 EQU 00010000B ; Get/SetSocket
DMA_CHAN2 EQU 00100000B ; Get/SetSocket
DMA_CHAN3 EQU 00110000B ; Get/SetSocket
DMA_CHAN4 EQU 01000000B ; Get/SetSocket
DMA_CHAN5 EQU 01010000B ; Get/SetSocket
DMA_CHAN6 EQU 01100000B ; Get/SetSocket
DMA_CHAN7 EQU 01110000B ; Get/SetSocket
DMA_CHAN8 EQU 10000000B ; Get/SetSocket
DMA_CHAN9 EQU 10010000B ; Get/SetSocket
DMA_CHAN10 EQU 10100000B ; Get/SetSocket
DMA_CHAN11 EQU 10110000B ; Get/SetSocket
DMA_CHAN12 EQU 11000000B ; Get/SetSocket
DMA_CHAN13 EQU 11010000B ; Get/SetSocket
DMA_CHAN14 EQU 11100000B ; Get/SetSocket
DMA_CHAN15 EQU 11110000B ; Get/SetSocket

	Revision History
	C
	T
	Tables
	Introduction
	Purpose
	Scope
	Related Documents

	Overview
	Functional Description
	System Architecture
	Initialization
	Configuration
	Status Change Notification
	Power Management
	Docking
	Overview of Services
	Non-specific Service
	Adapter Services
	Socket Services
	Window Services
	Error Detection and Correction Services
	Status Change Handling
	Reserved Services

	Assumptions and Constraints
	ROM Located
	Hardware Implementation
	Adapters Supported
	Sockets Supported
	Windows Supported
	EDC Generators
	Power Management and Indicators
	Calling Conventions
	Reserved Fields
	Register Usage

	Socket Services Generally Not Re-entrant
	Critical Areas and Disabled Interrupts
	Request Rejection

	Program Interface
	Presence Detection
	Data Types
	Service Descriptions
	AccessConfigurationSpace	[PC32]
	InquireBridgeWindow	[BOTH]
	InquireEDC	[BOTH]
	PauseEDC	[BOTH]
	ReadEDC	[BOTH]
	ResetSocket	[BOTH]

	Using Socket Services
	Determining Socket Services Resources
	Status Change Handling
	Bus-Expanders or Docking Stations
	Using XIP
	Power Management

	Appendix-A
	Service Codes
	Appendix-B
	Return Codes
	Appendix-C
	Socket Services Bindings
	Overview
	Presence Detection and Installation Notification
	Making Socket Services Requests
	Argument Passing
	Power Management and Indicators
	x86 Architecture Binding
	Overview
	Presence Detection
	Installation Notification
	Making Socket Services Requests
	Argument Passing
	CPU Register Interface Usage
	Packet Interface Usage
	Overview
	Packet Interface - real-mode x86
	Packet Interface - OS/2
	Packet Interface - Win-16
	Packet Interface - Win32 VxD

	Assumptions and Constraints
	ROM BIOS Located
	Adapters Supported
	EDC Generators
	Sockets Supported
	Windows Supported

	Individual Service Bindings
	CPU Register Usage Bindings
	AccessConfigurationSpace

	Packet Usage Bindings
	AccessConfigurationSpace
	AcknowledgeInterrupt
	GetAccessOffsets
	GetAdapter
	GetAdapterCount
	GetBridgeWindow
	GetEDC
	GetPage
	GetSetPriorHandler
	GetSetSSAddr
	GetSocket
	GetSSInfo
	GetStatus
	GetVendorInfo
	GetWindow
	InquireAdapter
	InquireBridgeWindow
	InquireEDC
	InquireSocket
	InquireWindow
	PauseEDC
	ReadEDC
	ResetSocket
	ResumeEDC
	SetAdapter
	SetBridgeWindow
	SetEDC
	SetPage
	SetSocket
	SetWindow
	StartEDC
	StopEDC
	VendorSpecific

	Assembly Language Definitions

